
Proof theory, syntactic representations, logic, and
sharing

Jui-Hsuan Wu
Institut Polytechnique de Paris

2

Résumé

Cette thèse s’intéresse à la conception des termes et à la structure des preuves. Un terme (ou une
expression) peut désigner toute structure syntaxique, y compris les phrases, les programmes,
les preuves mathématiques, etc. Une notion de partage, rendue possible par la dénomination
et la référence aux termes, est essentielle dans de nombreuses contextes. L’objectif de cette
thèse est de proposer une syntaxe appropriée qui soit à la fois expressive et compacte et qui
permette un mécanisme de partage.

C’est là qu’intervient la théorie de la preuve. La théorie de la preuve, comme son nom
suggère, s’intéresse à la structure des preuves mathématiques. En théorie de la preuve, les
systèmes de preuves sont utilisés pour décrire comment les preuves peuvent être construites.
Souvent, différents systèmes de preuves sont proposés pour une même logique. Par exemple,
pour la logique intuitionniste (resp. logique classique), la déduction naturelle NJ (resp. NK) et
le calcul de séquents LJ (resp. LK) de Gentzen sont des systèmes de preuve typiques. Dans
cette thèse, nous nous intéressons à (le fragment implicationnel de) la logique intuitionniste et
basons notre étude sur les systèmes focalisés, les systèmes "raffinant" les calculs de séquents par
la focalisation, premièrement introduite par Andreoli pour la recherche de preuves en logique
linéaire. Une autre notion qui joue un rôle essentiel dans notre étude est la polarisation. L’idée
est que les polarités des connecteurs logiques en logique intuitionniste (et logique classique) sont
souvent ambiguë, contrairement au cas de la logique linéaire. La polarité positive ou négative
peuvent donc être attribuées arbitrairement à certains connecteurs et même aux atomes dans
un séquent. Notons que ce choix de polariser des connecteurs et des atomes n’a aucun impact
sur la prouvabilité d’un séquent mais peut induire des preuves de formes différentes. C’est
grâce à cet aspect que nous concevons de différentes représentations syntaxiques en utilisant
des polarisations spécifiques.

Dans la première partie, nous commençons par introduire les concepts et résultats prélimi-
naires sur la théorie des preuves et le λ-calcul. Plus précisément, nous nous concentrons sur le
système de preuve focalisé LJF⊃, en s’appuyant sur lequel nous introduisons les extensions du
système non-focalisé LJ⊃ par des formules considérées comme axiomes. En particulier, nous
nous intéressons aux restrictions de ces extensions aux séquents atomiques, c’est-à-dire les
séquents composés uniquement de formules atomiques. Avec une procédure d’élimination des
coupures établie à l’aide de la notion de règles synthétiques d’inférence proposée par Marin
et al. [MMPV22], nous mettons l’accent sur les preuves sans coupures, ce qui distingue notre
approche introduite dans la partie suivante des autres études "preuves-comme-programmes"
de systèmes focalisés au sein de la Curry-Howard correspondance, y compris les systèmes
LKT et LKQ par Danos et al., le λµµ̃-calcul par Curien et Herbelin, et le système L par Munch-
Maccagnoni.

La deuxième partie de cette thèse porte sur le slogan "preuves-comme-termes". Fixons un
ensemble d’axiomes T et considérons les extensions de LJ⊃ par cet ensemble en utilisant les

i

deux polarisations uniformes δ− et δ+. Nous illustrons l’impact que la polarisation choisie
a sur les formes de preuves en considérant ces deux polarisations opposantes. En annotant
les séquents d’une façon appropriée, nous obtenons deux représentations syntaxiques de
preuves complètement différentes, à savoir la syntaxe négativement biaisée (ou simplement
la syntaxe négative) et la syntaxe positivement biaisée (ou simplement la syntaxe positive), à
travers les polarisations δ− et δ+. Contrairement à la syntaxe négative, qui est une syntaxe
arborescente dans laquelle le partage est impossible, la syntaxe positive est une syntaxe dans
laquelle nous pouvons exprimer le partage via une forme restreinte de substitutions explicites.
Grâce à la méta-théorie de LJ⊃, nous avons une façon systématique de transformer une preuve
positivement polarisée en une preuve négativement polarisée, qui nous permet de transformer
un terme en syntaxe positive en un terme en syntaxe négative. L’élimination de coupure, à
son tour, nous fournit une définition naturelle de substitution des termes. Cette approche nous
guide vers deux représentations de λ-termes, à savoir les λ-termes négatifs et et λ-termes
positifs. Les λ-termes négatifs sont simplement les λ-termes usuels alors que les λ-termes
positifs sont les termes où les applications et les abstractions ne peuvent introduite que par
substitutions explicites.

La troisième partie est consacrée au slogan "termes-comme-programmes". Dans cette partie,
nous nous focalisons sur les λ-termes positifs. Sachant que le λ-calcul peut être obtenu à partir
des λ-termes négatifs en considérant la β-réduction, une question se pose naturellement: est-il
possible de faire de même pour les λ-termes positifs? La réponse à cette question est positive.
Nous définissons ainsi un calcul appelé λ-calcul positif λpos basé sur les λ-termes positifs, et
montrons que ce calcul est effectivement compatible avec la β-réduction du λ-calcul. Dans un
deuxième temps, nous montrons qu’à notre surprise, ce calcul capture l’essence de "partage
utile", une notion de réduction sur les termes avec partage, introduite par Accattoli et Dal Lago
dans le contexte des études sur les modèles de coût du λ-calcul.

Dans la quatrième partie, nous proposons le système focalisé ILLF⊃,⊸ pour le fragment de
la logique linéaire contenant les connecteurs logiques ⊃ et⊸. Étant une extension du système
LJF⊃, ce système permet à chaque atome d’être polarisé négativement ou positivement, ce
qui le distingue notamment du système Forum de Miller [Mil96], un système focalisé avec
uniquement les atomes et connecteurs négatifs pour la logique linéaire. Similairement à ce que
nous avons fait avec le système LJF⊃ dans la première et deuxième parties, nous définissons les
règles synthétiques d’inférence et les extensions du système non-focalisé ILL⊃,⊸, montrons la
correction et la complétude de ILLF⊃,⊸ grâce à l’élimination des coupures, et discutons les
représentations syntaxiques correspondants.

ii

Abstract

This thesis focuses on the design of terms and the structure of proofs. Generally speaking, a
term (or an expression) can denote any syntactic structure, including sentences, programs,
mathematical proofs, etc. A notion of sharing, made possible by naming and referencing terms,
is essential in many settings. The goal of this thesis is to propose an appropriate syntax that is
both expressive and compact and allows a mechanism of sharing.

This is where structural proof theory comes in. Structural proof theory, as its name suggests,
puts its emphasis on the structure of mathematical proofs. In structural proof theory, proof
systems are used to describe how proofs can be constructed. Often, for various purposes, differ-
ent proof systems are proposed for the same underlying logic. For example, for intuitionistic
logic (resp. classical logic), Gentzen’s natural deduction NJ (resp. NK) and sequent calculus LJ
(resp. LK) are typical proof systems. In this thesis, we focus on (the implicational fragment
of) intuitionistic logic and base our study on focused proof systems, systems that "refine"
sequent calculi by focalization, a notion that was first introduced by Andreoli as a technique
improving proof research in linear logic. Another notion that plays a key role in our study is
polarization. The idea is that the polarities of logical connectives in intuitionistic logic (and
classical logic) are often ambiguous, unlike in linear logic. Positive or negative polarity can
therefore be arbitrarily assigned to some connectives and even to atoms in a sequent. Note that
this choice to polarize connectives and atoms has no impact on the provability of a sequent
but can induce proofs of different forms. It is thanks to this aspect that we design different
syntactic representations using specific polarizations.

In the first part, we start by introducing preliminary concepts and results in proof theory
and the λ-calculus. More precisely, we focus on the focused proof system LJF⊃, based on which
we introduce extensions of the non-focused system LJ⊃ by formulas considered as axioms.
In particular, we are interested in the restrictions of these extensions to atomic sequents, i.e.,
sequents composed only of atomic formulas. With a cut-elimination procedure established
using the notion of synthetic inference rules proposed by Marin et al. [MMPV22], we focus
on cut-free proofs, which distinguishes our approach introduced in the next part from other
"proofs-as-programs" studies of focused systems within the Curry-Howard correspondence,
including the LKT and LKQ systems by Danos et al., the λµµ̃-calculus by Curien and Herbelin,
and the L system by Munch-Maccagnoni.

The second part of this thesis follows the "proofs-as-terms" slogan. Let us fix a set of axioms
T and consider extensions of LJ⊃ by this set using the two uniform polarizations δ− and δ+.
We illustrate the impact that the chosen polarization has on the forms of proofs by considering
these two opposing polarizations. By annotating the sequents in an appropriate way, we obtain
two completely different syntactic representations of proofs, namely the negatively biased
syntax (or simply the negative syntax) and the positively biased syntax (or simply the positive
syntax), through the polarizations δ− and δ+. Unlike the negative syntax, which is a tree-like

iii

syntax in which sharing is impossible, the positive syntax is a syntax in which we can express
sharing via a restricted form of explicit substitutions. Thanks to the meta-theory of LJ⊃, we
have a systematic way to transform a positively biased proof into a negatively biased proof,
which allows us to transform a term in positive syntax into a term in negative syntax. Cut
elimination, in turn, provides us with a natural definition of meta-level substitution of terms.
This approach leads us to two representations of λ-terms, namely negative λ-terms and positive
λ-terms. Negative λ-terms are simply the usual λ-terms while positive λ-terms are the terms
where applications and abstractions can only be introduced by explicit substitutions.

The third part is devoted to the slogan "terms-as-programs". In this part, we focus on
positive λ-terms. Knowing that the λ-calculus can be obtained from negative λ-terms by
considering β-reduction, a question naturally arises: is it possible to do the same for positive
λ-terms? The answer to this question is positive. We thus define a calculus called positive λ-
calculus λpos based on positive λ-terms, and show that this calculus is indeed compatible with
the β-reduction of the λ-calculus. Then, we show that to our surprise, this calculus captures
the essence of "useful sharing", a notion of reduction on terms with sharing, introduced by
Accattoli and Dal Lago in the context of studying cost models of the λ-calculus.

In the fourth part, we propose the focused system ILLF⊃,⊸ for the fragment of linear logic
containing the logical connectives⊃ and⊸. Being an extension of the LJF⊃ system, this system
allows each atom to be either negatively or positively polarized, which distinguishes it from
Miller’s Forum system [Mil96], a focused system with only negative atoms and connectives
for linear logic. Similar to what we did with the LJF⊃ system in the first and second parts, we
define the synthetic inference rules and extensions of the unfocused system ILL⊃,⊸, show the
soundness and completeness of ILLF⊃,⊸ thanks to the elimination of cuts, and discuss the
corresponding syntactic representations.

iv

Contents

Résumé i

Abstract iii

Introduction 1

I Preliminaries 7

1 Structural Proof Theory 9
1.1 Gentzen’s sequent calculus LJ . 9
1.2 Focused proof system LJF⊃ . 11
1.3 Synthetic inference rules . 14
1.4 Cut-elimination of LJF⊃ . 20
1.5 Soundness and completeness of LJF⊃ . 23
1.6 Extending LJ⊃ . 25
1.7 Restricting to atomic sequents . 30

2 Reduction systems and λ-calculus 33
2.1 Reduction systems . 33
2.2 λ-calculus . 34
2.3 Evaluation: call-by-name and call-by-value . 36
2.4 Explicit substitution . 37

II Proofs as terms 39

3 Polarizations, structure of proofs, and term annotations 41
3.1 Polarizations and structure of proofs . 41
3.2 Annotations and term representation . 43
3.3 Cut-elimination and (meta-level) substitution 46
3.4 Positive to negative . 47
3.5 Encodings of untyped λ-terms . 49
3.6 Aspects and related works . 52

v

4 Terms and graphs 55
4.1 Trees and graphs . 55
4.2 Equivalence on terms with sharing . 56
4.3 λ-graphs with bodies . 57
4.4 Relating graphs and terms . 63
4.5 Concluding remarks and related works . 69

III Terms as programs 71

5 Positive λ-calculus λpos 73
5.1 Positive λ-calculus λpos . 73
5.2 Explicit positive λ-calculus λoxpos . 77

6 Usefulness: relating λpos and value substitution calculus 81
6.1 Sharing and usefulness . 81
6.2 Value substitution calculus (VSC) . 83
6.3 Dissecting λovsc: variable substitutions, useful (and non-useful) steps 86
6.4 Core factorization via postponement of non-useful steps 90
6.5 Simulating core λovsc in λoxpos . 93
6.6 Core normal forms and termination equivalence 103
6.7 Concluding remarks . 108

IV Back to proofs, linearly 109

7 Extending LJF⊃ with linearity 111
7.1 Unfocused proof system ILL⊃,⊸ . 111
7.2 Focused proof system ILLF⊃,⊸ . 112
7.3 Phases and synthetic inference rules . 116
7.4 Cut-elimination . 120
7.5 Soundness and completeness of ILLF⊃,⊸ . 126
7.6 Term representation . 131

V Conclusion 135

8 Conclusion and future work 137

A Auxiliary definitions and detailed proofs 145
A.1 Contexts and double contexts . 145
A.2 Proof of Proposition 33 . 146
A.3 Proof of Proposition 36 . 150

vi

Introduction

This thesis focuses on the design of terms (or expressions) and the structure of proofs.

What are terms, and why are they important?

Generally speaking, any syntactic structure existing in the world, such as a sentence, a
program, or a mathematical proof, can all be referred to as a term. People collect sentences
into a text, programs into a programming project, and mathematical proofs into a mathematics
textbook. But how do we collect, store, or talk about them? It certainly does not sound desirable
to copy the content of a book when we simply want to talk about it. Instead, we refer to it
by mentioning its name. This is where the basic concept of naming comes in, and a notion
of sharing hides just behind it. Such an idea can be found everywhere. In a mathematics
textbook, once we have stated a theorem, we often refer to it by its name rather than its full
statement. When programmers write programs, they give names to functions and call them by
their names ever since.

Sharing is everywhere. What should be a "good" way to represent it?

We use syntax to describe how terms can be formed, usually based on some grammar. There
are a few properties that we would expect from a "good" syntax. First, it has to be expressive:
we want to be able to express enough ideas in a natural language, to write interesting programs
in a programming language, etc. Second, it should be compact in some sense. Sure, it might
sound useful to have many different ways of expressing the same thing, typically in natural
languages. On the other hand, this feature could make it difficult to reason about the syntax.
Sometimes, it is probably preferable to have a "minimalistic" syntax while having the same
power of expressiveness.

Following this intuition, another natural question arises.

Given a syntax, do we have a good way to reason about it?

This question is usually hard to answer. In many cases, when one has a syntax that is
complicated enough, which is the case of most programming languages in real life, checking
(meta-)properties about the syntax becomes quite heavy. That is why we reverse the direction
and ask the following instead:

How can we obtain a syntax that has good meta-properties and is easy to reason
about?

This is where structural proof theory comes in.

1

Structural proof theory
What is a proof?

In high school, we all learn how to write proofs of mathematical properties, lemmas, or
theorems. Such proofs are written in natural languages and could be ambiguous or unclear due
to subtleties in some languages. When dealing with some complicated proof, it is sometimes
hard to verify every step of reasoning taken by the author. Proof theory solves this issue by
erasing such linguistic ambiguities, by leaving proofs only in their most abstract form, and by
considering them as mathematical objects.

Proof theory is now considered one of the major branches of mathematical logic alongside
set theory, model theory, and computability theory. As one of the many subdisciplines of proof
theory, structural proof theory puts its emphasis on the combinatorial and structural properties
of proofs. In structural proof theory, we use proof systems to build and reason about proofs.
There exist often many different proof systems for the same underlying logic. In the 1930s,
Gentzen proposed natural deduction systems NJ and NK for intuitionistic and classical logic.
In contrast to Hilbert-style systems most of which have only one or two rules of inference
(modus ponens and generalizations), reasoning in natural deduction relies on inference rules
to handle various logical connectives in a "natural" way. Failed attempts to prove Hauptsatz, a
key theorem to prove consistency, in his natural deduction systems, led Gentzen to invent the
first sequent calculus systems LJ and LK. Such systems provide more symmetry compared to
natural deduction and allow Gentzen to prove Hauptsatz, i.e. the cut-elimination theorem
in these systems.

Logic and computation: proofs as programs
Connections between logic and computation are often established following the analogy of the
Curry-Howard correspondence, where proofs correspond to programs. In the terminology of
programming languages, such a correspondence can be depicted as:

proofs ↔ programs
formulas ↔ types

proof normalization ↔ program execution

As an example, the following OCaml program
let id (x : int) = x;

has the type int→ int as it takes an argument of type int and returns a result of the same
type. Such a program defining the identity function on integers corresponds to the "trivial
proof" of the implication int ⊃ int.

Since its discovery, many authors have followed this line of research, trying to establish a
correspondence between some specific proof systems and calculi. The Curry-Howard corre-
spondence should be seen as a recipe where there are at least three main ingredients one could
decide on: (1) underlying logic (2) proof system (3) calculus.

Although the correspondence is between proofs (proof system) and terms (calculus), it
is common to first choose the underlying logic. Typical choices include intuitionistic logic,
classical logic, and linear logic [Gir87].

2

Intuitionistic logic, sometimes called constructive logic, underlies the idea of construc-
tivism in mathematics. Constructivist mathematicians argue that constructing a concrete
example of a mathematical object is necessary to prove its existence. This somehow reflects
what we think programs are: they are concrete objects! It seems then natural to consider a
proof system for intuitionistic logic and relate it to a calculus.

Classical logic has also been investigated as one side of the Curry-Howard correspondence.
The non-constructive feature of certain classical proofs has been shown related to effects and
control operators [Gri90, Par92].

Linear logic [Gir87] is a "new" logic refining both intuitionistic and classical logic. Its
particularity, that is, the notion of linearity, makes it a popular logic among computer scientists
in recent years, as it is resource-sensitive. Linear logic is also the origin of important notions
such as polarization [Gir91, Lau02] and focusing [And92] that have found their applications
in various aspects of programming. Another point to mention is that linear logic is often
studied with its sequent calculus LL, as its exotic feature makes it unnatural to be studied with
natural deduction.

In this thesis, we are mainly interested in the minimal fragment (that is, the fragment with
the implication ⊃ as the only connective) of intuitionistic logic.

Which proof systems should we choose?

It is well known that choosing Gentzen’s natural deduction NJ leads to a correspondence
with Church’s simply-typed λ-calculus. However, natural deduction does not allow exploring
(in a natural way) some sophisticated concepts from linear logic. What about sequent calculus?
A typical issue with sequent calculus is that proofs are built with tiny inference rules that might
not be dependent on each other, as inference rules can act on any formula from a sequent.

In many cases, consecutive inference rules that are independent of each other can be
permuted. Intuitively, such a rule permutation does not have any influence on the essence of
the proof. Proofs can thus be considered equivalent up to rule permutations. This redundancy
of sequent calculi is related to its syntactic bureaucracy, which motivates the use of proof
nets by Girard [Gir87].

Focusing: a step towards canonicity
Another typical problem with sequent calculi arises when one searches for proofs of a given
sequent. A typical way to do proof search is the backward search, which starts from the
sequent to prove, looks for the rules that can be applied to reach this conclusion, applies them,
and then repeats the procedure to prove the premises until there is no active sequent to prove.
There are many rules in sequent calculi, and moreover, there are usually several formulas that
can be the main formula of the rule to apply. As a result, search space can explode very quickly,
and even become exponential in the number of formulas in some cases. A simple way to solve
this issue is to reduce the number of rules considered each time: are there some rules that
can be applied before the others? Indeed, some rules can always be applied without losing
provability. These rules are called invertible. In other words, a rule is invertible means that its
premises are provable whenever its conclusion is. This is the origin of focusing: when doing
proof search, one should prioritize invertible rules, that is, apply invertible rules whenever
it is possible, and when there are only non-invertible rules that can be applied, one should

3

focus on a formula (and its sub-formulas) and apply corresponding non-invertible rules until
another invertible rule becomes available. This approach was first proposed by Andreoli in his
attempt to use linear logic as a logic programming language [And92]. In the past three decades,
various focused proof systems have also been proposed for different logics, such as classical
logic [DJS95, LM09, Mun09] and intuitionistic logic [Her94, DL06, LM09]. Another important
notion related to focusing is polarity. A connective is negative (resp. positive) if and only
if its right introduction rule is invertible. In linear logic, one has both negative and positive
conjunctions (resp. disjunctions). Such a concept has been extended to notably intuitionistic
and classical logic, where connectives (and even atomic formulas) can be polarized, inducing
systems having the same logical power but different forms of proofs.

Focusing and polarization have both been successfully applied within the Curry-Howard
correspondence, such as LKT and LKQ by Danos et al., λµµ̃-calculus [CH00] by Curien and
Herbelin, the dual calculus by Wadler [Wad03], polarized proof-nets by Laurent [Lau03], and
system L [Mun09] by Munch-Maccagnoni, in which call-by-name and call-by-value evaluation
strategies are related to different choices of polarizing formulas/type expressions. As one would
expect, cut rules (or some restricted variants) are considered in all these systems/calculi in
order to capture the correspondence "proof normalization↔ program execution". In this thesis,
however, we are interested in a different question.

Proofs as programs terms
What if we forget about cut rules and only consider cut-free proofs?

In other words, we are not interested in the computational aspect of proof systems but rather
its structural aspect, which distinguishes our study from all these existing studies of focused
proof systems within the Curry-Howard correspondence. It is, however, usual to consider
only the cut-free fragment of a proof system, especially in a focused setting. Indeed, when
one studies proof search, it is natural to get rid of the cut rule, which is usually the only rule
that breaks the sub-formula property. This is exactly the case of Andreoli’s triadic system
[And92].

There are more good reasons to only consider cut-free focused proofs. Despite being intro-
duced as a proof search technique, focusing is more than that: it gives more structure to sequent
proofs and provides a (light) canonical form for proofs. Essentially, cut-free focused proofs have
a two-phase structure: negative (or asynchronous) phases consisting of invertible rules and
positive (or synchronous) phases consisting of non-invertible rules. Such a structure enables
the consideration of phases as units for building proofs or the combination of connectives as
a single connective. Such a synthetic view has been widely studied in the literature in many
different forms, such as bipoles [And01] and synthetic connectives [Cha08]. More recently,
Marin et al. introduced the notion of synthetic inference rule that corresponds essentially
to the concatenation of two consecutive phases. In this thesis, we follow their approach and
restrict our study to a special class of sequents, proofs of which can be seen as built with
synthetic inference rules.

By using the focused proof system LJF by Liang and Miller [LM09] and by considering
two specific polarizations, namely the negative polarization and the positive polarization, we
obtain two very different styles of syntax. The negative one corresponds to the usual tree-like
syntax while the positive one provides the possibility to account for sharing within a term.

4

In particular, by applying our approach to untyped λ-terms, we obtain two very different
presentations of untyped λ-terms, namely negative λ-terms and positive λ-terms. negative
λ-terms are exactly the same as λ-terms while positive λ-terms can be built with (restricted
forms) of let expressions (or explicit substitutions). We show how cut-elimination naturally
provides a notion of (meta-level) substitution on both sets of terms and describe how a positive
λ-term can be transformed into a negative λ-term.

Back to proofs, we also extend LJF⊃ by considering the linear implication⊸. This is
the first step towards an almost fully negative presentation (that is, with only negative
connectives and atoms of both polarities) of linear logic. The proof system ILLF⊃,⊸ considered
here is inspired by Miller’s Forum, a focused proof system for linear logic in which only
negative connectives are considered and atoms are treated as negative. We show the basic
meta-properties (cut-elimination, soundness, completeness) that one would expect from a good
proof system and describe how our approach to term representation can be adapted to this
setting.

Terms as programs
What can we get from a rather restricted syntax?

Now that we have defined positive λ-terms, let us put proof theory aside. Can we define a
reduction on positive λ-terms? We already know how to get the λ-calculus from negative
λ-terms, that is, simply by considering the β-reduction. Can we do it similarly on positive
λ-terms? Does the syntax somehow guide us in defining such a reduction? The answer is
positive. As we shall see in detail, the only reasonable definition of reduction leads us to the
positive λ-calculus λpos. λpos is not just yet another call-by-value λ-calculus with explicit
substitutions. Explicit substitutions have been widely used as a tool to study reduction and
sharing. Intuitively, in an explicit substitution t[x�u], the name (or variable) x is used to share
the sub-term u in the term t. In contrast to most calculi with explicit substitutions in which all
terms (or a large number of them) can be shared with such a syntax, λpos only allows a few
forms of sub-structures to be shared with explicit substitutions (we call them sub-structures
here since they are not sub-terms per se). Such a restricted syntax, however, does not make
λpos less expressive than other calculi. What is remarkable is that thanks to the simple form
of its syntax, it surprisingly captures useful sharing, a concept in reduction with sharing
first introduced by Accattoli and Dal Lago [ADL16] in their study of reasonable cost models
of the λ-calculus. We show this result by establishing a relationship between the positive
λ-calculus and the value substitution calculus (VSC), another call-by-value λ-calculus with
explicit substitutions by Accattoli and Paolini [AP12].

5

Outline of the thesis
This thesis is structured as follows:

Chapter 1 introduces basic concepts and notions of structural proof theory. In particular, we
present the implicational fragment LJ⊃ of Gentzen’s sequent calculus LJ, and its corresponding
focused proof system LJF⊃.

Chapter 2 introduces Church’s λ-calculus, its syntax and operational semantics, as well as
some basic notions and notations on reduction systems.

Chapter 3 describes how polarizations affect the structure of proofs and how different styles
of term representation arise. In particular, we define the negative bias syntax and the positive
bias syntax based on two uniform polarizations and show how different representations, namely
negative λ-terms and positive λ-terms, of untyped λ-terms can be obtained from this approach.
We also discuss various operations such as substitutions and equality checking on terms. This
chapter is based on [MW23].

Chapter 4 proposes a graphical representation for positive λ-terms that captures a naive
equivalence called structural equivalence on positive λ-terms. This chapter is based on [Wu23].

Chapter 5 introduces the positive λ-calculus λpos, a call-by-value calculus with explicit
substitutions defined based on positive λ-terms, as well as an explicit variant λoxpos of its open
fragment λopos. This chapter is based on [Wu23] and [AW24].

Chapter 6 shows that the positive λ-calculus captures the essence of useful sharing, a form
of reduction on terms with sharing, by relating it to Accattoli and Paolini’s value substitution
calculus [AP12]. This chapter is based on [AW24].

Chapter 7 proposes an extension of LJF⊃ with linear implication⊸ and briefly discusses
how our proofs-as-terms approach can be adapted in this setting.

Chapter 8 gives the general conclusion of the thesis and presents some directions for future
work.

6

Part I

Preliminaries

7

Chapter 1

Structural Proof Theory

In this chapter, we introduce the basic concepts and notations of structural proof theory that
will be used throughout the thesis. We start by introducing the implicational fragment LJ⊃ of
Gentzen’s sequent calculus LJ in Section 1.1 and its focused version LJF⊃ by Liang and Miller
in Section 1.2. Based on the focused proof system LJF⊃, we present (a variant of) the notion of
synthetic inference rules by Marin et al. [MMPV22] in Section 1.3. In Section 1.4, we propose
a big-step cut-elimination procedure for LJF⊃ based on the notion of synthetic inference rules.
Thanks to the cut-elimination procedure, a simple and elegant proof of the completeness of
LJF⊃ is proposed in Section 1.5. In the end, we show how to extend the unfocused system
LJ⊃ with a given multiset of formulas as axioms by using LJF⊃ and synthetic inference rules
in Section 1.6 and describe these extensions when only atomic sequents are considered in
Section 1.7.

Despite the fact that most results presented in this chapter are only obtained from existing
results by restricting to the implicational fragment, some proofs proposed in the literature
cannot be adapted to our setting, simply because they sometimes require the expressivity of
the full LJ (or LJF). As a consequence, we propose alternative proofs that only involve the
fragment in question.

1.1 Gentzen’s sequent calculus LJ

Gentzen [Gen35] introduced the very first sequent calculi LJ and LK as an alternative to his
natural deduction systems NJ and NK. In this thesis, we focus on the minimal fragment LJ⊃ of
LJ, that is, the fragment with implication as the only logical connective. Starting from a set
ATOM of atomic formulas (or simply atoms), denoted by α,β,γ, · · · , the set of formulas is
defined using the following grammar:

Formulas B,C,D F α ∈ ATOM | B ⊃ C

A sequent, denoted by S,S ′, · · · , is a syntactic object of the form Γ ⊢ Bwhere Γ is amultiset
of formulas and B is a formula. A multiset of formulas is often presented as a list of formulas,
separated by commas: B1, · · · ,Bn, in which the ordering of formulas does not matter. The
inference rules of the implicational fragment LJ⊃ of LJ are shown in Figure 1.1. The I rule is
also called the initial rule, and the C rule is the rule for contraction. There are, however,
some adjustments compared to Gentzen’s original presentation:

9

1. There is no (explicit) weakening rule: weakening is done all at once with the I rule. This
is the reason why the schema variable Γ is present on the L.H.S. of the conclusion of
the I rule.

2. The ⊃ L and cut rules are presented in an additive style instead of the usual multi-
plicative style. More precisely, the L.H.S. of sequents are treated additively in these
rules, while the R.H.S. are treated multiplicatively as usual (the formula on the R.H.S.
of the conclusion only appears once in the premises). In other words, we always apply
(implicit) contraction when applying these rules. This is in fact a consequence of the
previous point.'

&

$

%

I
Γ ,B ⊢ B

Γ ,B,B ⊢ C
C

Γ ,B ⊢ C
Γ ⊢ B Γ ,B ⊢ C

cut
Γ ⊢ C

Γ ⊢ B1 Γ ,B2 ⊢ B ⊃ L
Γ ,B1 ⊃ B2 ⊢ B

Γ ,B1 ⊢ B2 ⊃ R
Γ ⊢ B1 ⊃ B2

Figure 1.1: Implicational fragment LJ⊃ of Gentzen’s LJ.

The following proposition shows that the I rule can be replaced with its atomic variant:
Iat

Γ ,α ⊢ α
Proposition 1 (Initial expansion). For all Γ and B, the sequent Γ ,B ⊢ B has an LJ⊃ proof in

which any occurrence of the I rule has an atomic formula as its main formula.

The following theorem, called Hauptsatz by Gentzen, also known as the cut-elimination
theorem, is the key theorem of most sequent systems.
Theorem 1 (Hauptsatz). Let S be an LJ⊃ sequent. If S can be proved in LJ⊃, then it can be

proved in LJ⊃ without using the cut rule.

Proposition 2 (Subformula property). Let S be an LJ⊃ sequent. If S can be proved in LJ⊃, then
it has an LJ⊃ proof in which every formula is a subformula of some formula in S .

With only a few inference rules, the proof system LJ⊃ is indeed very simple. However, LJ⊃
proofs often lack structure and contain many redundancies:

1. Non-controlled contraction: contraction can be applied anywhere in a proof, even on
some irrelevant formulas. Here, a formula (occurrence) is called irrelevant if it always
appears as a side formula in each inference rule.
Imagine that we replace the initial rule with its atomic variant Iat and consider the
following contraction within a proof:

Π
Γ ,B,B ⊢ C

C
Γ ,B ⊢ C

Two cases to consider:

10

• B is atomic. Then the occurrence B is either irrelevant or used in some I rule. In
both cases, the contraction is redundant since there is already the occurrence B
on the L.H.S.

• B is non-atomic. Then the occurrence B is either irrelevant or is the main formula
of some ⊃ L rule. In the latter case, the ⊃ L rule can appear anywhere in the proof.
To maintain more structure in proofs, one would probably prefer a proof in which
its corresponding ⊃ L rule is applied right after the contraction that creates it.

2. Lack of canonicity. Consider the following proofs:

I
B1 ⊃ B2 ⊢ B1 ⊃ B2

and

I
B1 ⊢ B1

I
B1,B2 ⊢ B2 ⊃ L

B1 ⊃ B2,B1 ⊢ B2 ⊃ R
B1 ⊃ B2 ⊢ B1 ⊃ B2

The left proof and the right proof correspond essentially to λ-terms λf .f and λf .λx.f x,
respectively. These two terms are η-equivalent. In many settings, particularly in the
study of programming languages, η-equivalence is usually not considered. However,
when one wants to reach some notion of canonicity or compactness, it might be
natural to consider these two terms equivalent or simply keep only one of them.

This is the reason why we would rather use a focused version of LJ⊃ for our purposes. The
following proposition is classic and provides (part of) the basis for the focused proof system
LJF⊃.

Proposition 3 (Invertibility of ⊃ R). If Γ ⊢ B1 ⊃ B2 is provable in LJ⊃, then Γ ,B1 ⊢ B2 is

provable in LJ⊃.

1.2 Focused proof system LJF⊃

We present the focused proof system LJF⊃, the implicational fragment of Liang and Miller’s
LJF [LM09].

LJF⊃ has the same formulas as LJ⊃ but in LJF⊃, formulas are polarized: implications are
always negative while each atomic formula can be either positive or negative. Therefore, we
have to equip the system with a polarization (or an atomic bias assignment), that is, a
function δ : ATOM→ {+,−}, and we say that an atomic formula α is positive (resp. negative)
if δ(α) = + (resp. δ(α) = −). Often, the polarization chosen is left implicit and we simply say
that a formula is positive (or negative).

There are two kinds of sequents, namely ⇑-sequents and ⇓-sequents, essentially correspond-
ing to the two different phases in a focused proof. ⇓-sequents are further classified into two
categories: left ⇓-sequents and right ⇓-sequents.

• ⇑-sequents Γ ⊢Θ⇑Θ′ .

• Left ⇓-sequents Γ ⇓B ⊢ α. The formula B is said to be under focus.

• Right ⇓-sequents Γ ⊢ B⇓ . The formula B is said to be under focus.

11

'

&

$

%

δ(α) = − Il
Γ ⇓α ⊢ α

δ(α) = + Ir
Γ ,α ⊢ α⇓

Γ ,N ⇓N ⊢ α
Dl

Γ ,N ⊢ α
Γ ⊢ P ⇓

Dr
Γ ⊢ P

Γ ⊢ α
Sr

Γ ⊢ α⇑
Γ ,β ⊢ α

δ(β) = + Rl
Γ ⇓β ⊢ α

Γ ⊢N ⇑
Rr

Γ ⊢N ⇓

Γ ⊢ B1⇓ Γ ⇓B2 ⊢ α ⊃ L
Γ ⇓B1 ⊃ B2 ⊢ α

Γ ,B1 ⊢ B2⇑ ⊃ R
Γ ⊢ B1 ⊃ B2⇑

Γ ⊢ B⇑ Γ ,B ⊢ C⇑
cut

Γ ⊢ C⇑
Γ ⊢ B⇑ Γ ⇓B ⊢ α

cutk
Γ ⊢ α

Figure 1.2: Focused proof system LJF⊃. In the cut and cutk rules, the notation B⇑ denotes B ⇑
or B (only if B is atomic).

Here, Γ , Θ, and Θ′ are (possibly empty) multisets of formulas and Θ ∪Θ′ is a singleton. The
innermost zone of a sequent, that is, the zone between the arrow and ⊢, are called staging
zones, and the outermost zones are called storage zones. For simplicity, when Θ in the
⇑-sequent Γ ⊢Θ⇑Θ′ is empty, we drop the arrow and simply write Γ ⊢Θ′ , which leads to the
following definition.

Definition 1 (Border sequent). A border sequent is an ⇑-sequent of the form Γ ⊢ α.

The inference rules of LJF⊃ are shown in Figure 1.2. Let us make some simple observations
and comments.

First, LJF⊃ is sound with respect to LJ⊃ thanks to the following proposition, which essen-
tially shows that LJF⊃ can be seen as a refinement of LJ⊃.

Proposition 4 (Derivability of the LJF⊃ rules). Every LJF⊃ rule is derivable in LJ⊃, if we replace
the possible arrow on the L.H.S. with a comma and erase the possible arrow on the R.H.S.

Compared to the unfocused system LJ⊃, LJF⊃ has some desirable features:

• Controlled contraction: in addition to the implicit contractions (on Γ) in the ⊃ L and cut
rules (as in LJ⊃), contraction can only be applied via the Dl rule. The point is that the
contracted formula cannot be irrelevant, its corresponding logical rule (or the initial
rule, if it is atomic) has to be applied right after.

• Maximal right-introduction phase: any implication on the R.H.S. has to be decomposed
with the ⊃ R rule before some other rules can be applied.

• Atomic initial rules: in LJF⊃, there are two initial rules, for formulas of different polarities,
and they are both atomic. The fact that the initial rule for negative formulas is atomic

12

also suggests that the system is strongly focused, in the sense that once a formula is
put under (left-)focus, it has to be decomposed (using the ⊃ L) until it becomes atomic.

Remark 1 (To cut, or not to cut, that is the question). In Andreoli’s seminal paper [And92]

introducing the notion of focusing, cut rules are not included in his triadic system Σ3. This is not

an issue since focusing is often used for logic programming, in which computation is described by

means of proof-search, in contrast to the proof normalization approach of functional programming.

Even though we do not address the proof-search aspect of focusing in this thesis work, we will

mainly focus on the cut-free fragment of our systems. For example, in the following chapters

in which we explore term structures arising from annotating proofs, terms simply correspond

to cut-free proofs. Cut rules are, however, considered here. A cut-elimination procedure will be

proposed later since they are essential in the proof of completeness of focusing and will be useful

for describing (meta-level) substitution of terms.

Now let us describe how a cut-free LJF⊃ proof is structured starting from a border sequent.
The only rules that can be applied are the decide rules Dl and Dr , and after applying one of
these rules, we obtain a ⇓-sequent and go into the ⇓-phase.

We first discuss the case where we use the Dl rule. The only rule that keeps us in the
⇓-phase is ⊃ L. On the other hand, the release rules (Rl and Rr) are used to switch between
phases (from ⇓ to ⇑), and the initial rules (Il and Ir) are used to finish a branch. Once we are in
the ⇑-phase, we have to apply ⊃ R until the formula in the right staging zone becomes atomic.
At this point, one should apply Sr , and we reach again a border sequent.

If we use the Dr rule instead of Dl , then we must finish the proof with the Ir rule.
From the above description, we can clearly see the two-phase structure of focused proofs.
A key theorem of LJF⊃ is that, given an LJ⊃ sequent, different choices in polarizing atomic

formulas do not affect its provability in LJF⊃.
Theorem 2 (Polarizations do not affect provability, [LM09]). A sequent Γ ⊢Θ⇑Θ′ is provable
in LJF⊃ for some polarization if and only if it is provable for any polarization.

Theorem 3 (Soundness and completeness, [LM09]). Γ ⊢ B is provable in LJ⊃ if and only if

Γ ⊢ B⇑ is provable in LJF⊃ for some polarization.

Below we give some properties of the structure of LJF⊃ proofs that are straightforward but
useful in the following.
Proposition 5. Let

S ′ · · ·
S

be an LJF⊃ derivation. Then the left storage zone of S is included in that of S ′ .

Proof. Straightforward by induction on LJF⊃ rules.
Proposition 6 (Weakening). Let

S1 · · · Sn

S
be an LJF⊃ derivation and let S ′ (resp. S ′i) be the sequent obtained from S (resp. Si) by extending

the left storage zone with a fixed multiset ∆ of formulas. Then we have an LJF⊃ derivation of the

form

S ′1 · · · S ′n

S ′

13

Proof. Straightforward by induction on LJF⊃ rules.

Proposition 7 (Strengthening for negative formulas). Let

S1 · · · Sn

S

be an LJF⊃ derivation and N be a negative formula in the left storage zone of S . Suppose that
in this derivation, N is never chosen as the main formula of the Dl rule. Then we have an LJF⊃
derivation of the form

S ′1 · · · S ′n

S ′

where S ′ (resp. S ′i) is obtained from S (resp. Si) by removing N from S .

Proof. Straightforward by induction on LJF⊃ rules.

Proposition 8 (Strengthening for positive formulas). Let

S1 · · · Sn

S

be an LJF⊃ derivation and P be a positive formula in the left storage zone of S . Note that P is

atomic. Suppose that in this derivation, P is never used as the formula to match the R.H.S. in an

Ir rule. Then we have an LJF⊃ derivation of the form

S ′1 · · · S ′n

S ′

where S ′ (resp. S ′i) is obtained from S (resp. Si) by removing P from S .

Proof. Straightforward by induction on LJF⊃ rules.

1.3 Synthetic inference rules
Throughout the thesis, we mainly focus on (cut-free) proofs of a special class of sequents:
border sequents. As described previously, a (cut-free) LJF⊃ proof of a border sequent is
organized into different layers where each of which is the concatenation of an ⇑-phase and
a ⇓-phase. Each layer can, in fact, be viewed as a single large-scale inference rule, called a
synthetic inference rule [MMPV22].

In contrast to the rather abstract way of defining synthetic inference rules in [MMPV22]
where side conditions of synthetic inference rules are left implicit, we propose a definition
with explicit side conditions on schema variables occurring in the conclusion of a synthetic
inference rule.

To begin, we need the following relation on multisets of formulas.

Definition 2. We define ⊑ as the relation on multisets of formulas such that:

Γ ⊑ ∆ if and only if ∀B ∈ Γ ,B ∈ ∆

14

For example, we have {α,α} ⊑ {α}.

Definition 3 (Inclusion and equality conditions).

• An inclusion condition is of the form A ⊑ Γ , where A is a finite multiset of atomic

formulas and Γ is a schema variable ranging over multisets of formulas.

• An equality condition is of the form β = γ where γ is an atomic formula and β is a

schema variable ranging over atomic formulas.

Essentially, an inclusion condition (resp. equality condition) can be seen as a predicate on the set

of multiset of formulas (resp. the set of atomic formulas).

Definition 4 (Synthetic side condition). A synthetic side condition (on schema variables Γ

and α) consists of an inclusion condition A ⊑ Γ on Γ together with a possible equality condition

α = β on α, denoted by A ⊑ Γ , (α = β).
The notation proposed here with parentheses around the equality condition α = β only serves

as a unified notation for two different types of synthetic side conditions:

1. the ones without the equality condition A ⊑ Γ , and

2. the ones with the equality condition A ⊑ Γ ,α = β.

A synthetic inference rule is essentially an inference rule with a synthetic side condition on
Γ and α, where Γ and α are the schema variables appearing in the conclusion S of the rule, and
one can apply the rule only when every condition in the synthetic side condition is satisfied (in
the usual sense).

We are now ready to introduce the synthetic inference rule that corresponds to the con-
catenation of an ⇑-phase and a ⇓-phase triggered by a Dl rule on some negative formula N .
As we shall see, the form of the synthetic inference rule actually depends on the polarity of an
atomic formula, called the target of N , defined as follows.

Definition 5 (Target). The target targ(B) of a formula B is defined inductively as follow:

targ(α) = α targ(B1 ⊃ B2) = targ(B2)

Definition 6 (Synthetic inference rule). A (left) synthetic inference rule for a negative formula

N is an inference rule of the form

Γ ,N ,Γ1 ⊢ α1 · · · Γ ,N ,Γn ⊢ αn{β1, . . . ,βm} ⊑ Γ , (α = β) N
Γ ,N ⊢ α

justifed by an LJF⊃ derivation of the form

N ⊢ β1⇓ · · · N ⊢ βm⇓ N,Γ1 ⊢ α1 · · · N,Γn ⊢ αn (N ⇓β ⊢ α)
.
.
.
.
.
Π

N ⇓N ⊢ α
Dl

N ⊢ α

where

15

1. InΠ, there is no ⇓-sequent above an ⇑-sequent.

2. For all 1 ≤ j ≤m, βj is positive.

3. β is negative.

Note that:

1. Γ is a schema variable ranging over multisets of formulas while Γi are multisets of formulas

that are entirely determined by N .

2. α is a schema variable ranging over atoms while β and βj are atomic formulas that are

entirely determined by N . Every αi is entirely determined by N , except possibly one, in the

case where the right-most premise N ⇓β ⊢ α does not exist.

3. The right-most premiseN ⇓β ⊢ α and the equality condition α = β in the synthetic inference

rule only appear when targ(N) is negative and in this case, we have β = targ(N). Otherwise,
we have αi = α for some i (i = n if we keep the left-to-right order in the derivation tree).

Note that the LJF⊃ derivation in the above definition is entirely determined by the formula
N 1, which implies the uniqueness of synthetic inference rules. Also, note that this is not
necessarily true in richer settings (with additive connectives, for example). In particular, it is
not true in the full LJF.
Proposition 9 (Uniqueness of synthetic inference rules). Every negative formula N has a

unique synthetic inference rule.

Similarly, we can define (right) synthetic inference rules for positive formulas by replacing
the Dl rule in the above definition with the Dr rule. Since positive formulas are all atomic,
their synthetic inference rules actually have a very simple form: they coincide with the initial
rule of LJ⊃.
Definition 7 (Right synthetic inference rule). The (right) synthetic inference rule for a
positive atom α is the rule

{α} ⊑ Γ
Γ ⊢ α

In fact, negative atomic formulas have synthetic inference rules of essentially the same
form.
Proposition 10. The (left) synthetic inference rule for a negative atom β is the rule

α = β
Γ ,β ⊢ α

Example 1. Let β and γ be two atoms. Consider the negative formula N = (β ⊃ γ) ⊃ β ⊃ γ . If
β is positive and γ is negative, then we have the following LJF⊃ derivation:

N,β ⊢ γ
Sr

N,β ⊢ γ ⇑
⊃ R

N ⊢ β ⊃ γ ⇑
Rr

N ⊢ β ⊃ γ ⇓
N ⊢ β⇓ N ⇓γ ⊢ α

⊃ L
N ⇓β ⊃ γ ⊢ α

⊃ L
N ⇓ (β ⊃ γ) ⊃ β ⊃ γ ⊢ α

Dl
N ⊢ α

1This derivation actually corresponds to the unique decomposition of N into N = β1 ⊃ · · · ⊃ βm ⊃ (Γ1 ⊃ α1) ⊃
· · · ⊃ (Γn ⊃ αn) ⊃ β (modulo the equation B ⊃ C ⊃D = C ⊃ B ⊃D).

16

Therefore, the synthetic inference rule for N is:

Γ ,N ,β ⊢ γ
{β} ⊑ Γ ,α = γ N

Γ ,N ⊢ α
If β is negative and γ is positive, then we have the following LJF⊃ derivation:

N,β ⊢ γ
Sr

N,β ⊢ γ ⇑
⊃ R

N ⊢ β ⊃ γ ⇑
Rr

N ⊢ β ⊃ γ ⇓

N ⊢ β
Sr

N ⊢ β⇑
Rr

N ⊢ β⇓
N,γ ⊢ α

Rl
N ⇓γ ⊢ α

⊃ L
N ⇓β ⊃ γ ⊢ α

⊃ L
N ⇓ (β ⊃ γ) ⊃ β ⊃ γ ⊢ α

Dl
N ⊢ α

Therefore, the synthetic inference rule for N is:

Γ ,N ,β ⊢ γ Γ ,N ⊢ β Γ ,N ,γ ⊢ α
N

Γ ,N ⊢ α
Note that the right-most premise has the schema variable α as its R.H.S.

The following propositions show that synthetic inference rules are equivalent to LJF⊃
inference rules in terms of provability: if a border sequent can be proved in LJF⊃, it can also
be proved using synthetic inference rules, and vice versa.

Proposition 11. Synthetic inference rules are derivable in LJF⊃.

Proof. Consider a synthetic inference rule of the form

Γ ,N ,Γ1 ⊢ α1 · · · Γ ,N ,Γn ⊢ αn{β1, . . . ,βm} ⊑ Γ ,α = β N
Γ ,N ⊢ α

justified by the LJF⊃ derivation

N ⊢ β1⇓ · · · N ⊢ βm⇓ N,Γ1 ⊢ α1 · · · N,Γn ⊢ αn N ⇓β ⊢ α
..... Π

N ⇓N ⊢ α
Dl

N ⊢ α
Let α = β and∆ be a multiset of formulas such that βj ∈ ∆ for 1 ≤ j ≤m. Then by Proposition 6,
we have:
∆,N ⊢ β1⇓ · · · ∆,N ⊢ βm⇓ ∆,N ,Γ1 ⊢ α1 · · · ∆,N ,Γn ⊢ αn ∆,N ⇓β ⊢ α

..... Π
′

∆,N ⇓N ⊢ α
Dl

∆,N ⊢ α
We can then conclude since each of the first m endsequents can be proved with an Ir rule and
the right-most endsequent can be proved by an Il rule. Similarly for synthetic inference rules
without the equality condition α = β.

17

Proposition 12 (LJF⊃ derivations as synthetic inference rules). Let Π be an LJF⊃ proof of the
form

Π′

Γ ,N ⇓N ⊢ α
Dl

Γ ,N ⊢ α
ThenΠ is of the form

Π1
S1 · · ·

Πn
Sn

Γ ,N ⊢ α
where

S1 · · · Sn

Γ ,N ⊢ α
is an instance of the synthetic inference rule of N .

Proof. It suffices to note that every LJF⊃ rule except Dl is deterministic (by reading from
conclusion to premises).

We have a similar proposition for LJF⊃ proofs ending with a Dr rule, but it is trivial since
an Ir rule must follow right after applying the Dr rule.

Remark 2. This definition of synthetic inference rules is slightly different from the one given by

Marin et al. in [MMPV22]. With their definition, a synthetic inference rule of the form given in

Definition 6 (without the condition α = β) would rather be represented as the inference rule

Γ ,β1, . . . ,βm,Γ1,N ⊢ α1 · · · Γ ,β1, . . . ,βm,Γn,N ⊢ αn
N

Γ ,β1, . . . ,βm,N ⊢ α

with no additional condition to be satisfied by Γ . The difference between these two versions is

visible when βj are not pairwise distinct. For example, consider the formula N = β ⊃ β ⊃ β where

β is positive. With our definition, the synthetic inference rule for N is:

Γ ,N ,β ⊢ α
{β,β} ⊑ Γ N

Γ ,N ⊢ α

while with the definition in [MMPV22], the synthetic inference rule for N is

Γ ,N ,β,β,β ⊢ α
N ∗

Γ ,N ,β,β ⊢ α

It is clear that the rule N ∗ is derivable from N but not the other way around. This difference is

however harmless in certain settings. In particular, it is the case of [MMPV22], where synthetic

inference rules are used as a tool to extend systems such as LJ and LK with a given set of formulas

as axioms. In such a setting, the difference between the two definitions above is invisible since N
is derivable from N ∗ in the presence of contraction.

Synthetic inference rules provide another way to view LJF⊃ proofs (of a border sequent).
To build a proof of a given border sequent S = Γ ⊢ α, it suffices to consider the synthetic
inference rule of each negative formula in Γ and the synthetic inference rule of α. As a result,

18

any LJF⊃ proof of a border sequent can be seen as a proof built with synthetic inference rules.
This point of view is crucial in our study of term representation and has a direct impact on the
cut-elimination procedure proposed in the next section.

From an operational view of proof search/construction, applying the synthetic inference
rule

Γ ,N ,Γ1 ⊢ α1 · · · Γ ,N ,Γn ⊢ αn{β1, . . . ,βm} ⊑ Γ , (α = β) N
Γ ,N ⊢ α

extends the L.H.S. of the conclusion with the multisets Γ1, . . . ,Γn of formulas respectively. In
other words, this extends the choices of synthetic inference rules with the (left) synthetic
inference rule of N and the (right) synthetic inference rule of α for all negative formula N and
positive atom α in Γi . As we mentioned earlier, these new choices of synthetic inference rules
are particularly simple when the formulas added to the L.H.S., that is, the formulas from Γi ,
are all atomic. Γ1, . . . ,Γn being entirely determined by N , the question to ask now is:

For which N , Γ1, . . . ,Γn are all made of atomic formulas?

We can actually describe a more precise relation of N and Γ1, . . . ,Γn by first defining the
order of a formula.

Definition 8 (Order of a formula). The order ord(B) of a formula B is defined inductively as

follows:

ord(α) = 0 ord(B1 ⊃ B2) =max(ord(B1) + 1, ord(B2))

The following proposition relates the order of a (negative) formula and the orders of the
formulas added to the L.H.S. in its synthetic inference rule.

Proposition 13. Let N be a negative formula of order n. Let

Γ ,N ,Γ1 ⊢ α1 · · · Γ ,N ,Γk ⊢ αk{β1, . . . ,βm} ⊑ Γ , (α = β) N
Γ ,N ⊢ α

be its synthetic inference rule. Then Γ1, . . . ,Γk are made of formulas of order at mostmax(0,n−2).

Proof. Straightforward by the structure of LJF⊃ rules.

Corollary 1. Let N be a negative formula of order at most 2. Let

Γ ,N ,Γ1 ⊢ α1 · · · Γ ,N ,Γn ⊢ αn{β1, . . . ,βm} ⊑ Γ , (α = β) N
Γ ,N ⊢ α

be its synthetic inference rule. Then Γ1, . . . ,Γn are made of atomic formulas only.

Let S = Γ ⊢ α be a border sequent with only formulas of order at most 2. Then any LJF⊃
proof of it can be seen as a proof built with synthetic inference rules by only looking at the
border sequents in the proof. Moreover, thanks to Corollary 1, each of these synthetic inference
rules is either an initial rule or the synthetic inference rule of some B ∈ Γ , which makes the
structure of the proof particularly simple. As we will see in Section 1.6, synthetic inference
rules of formulas of order at most 2 are in some way compatible with the unfocused system
LJ⊃, allowing merging the synthetic aspect of focusing into LJ⊃.

19

1.4 Cut-elimination of LJF⊃
Theorem 4 (Cut admissibility of LJF, [LM09]). Let S be an LJF sequent. If S can be proved in

LJF, then it can be proved in LJF without using cuts.

In [LM09], Liang and Miller proposed a cut-elimination procedure for LJF, using various in-
termediate cut rules between different types of sequents. Such a presentation of cut-elimination
is called small-step, as cuts are permuted over individual LJF inference rules.

Here we present our proof of cut-elimination in a big-step style, where cuts are permuted
over a large number of inference rules, with some of which corresponding to LJF⊃ phases or
synthetic inference rules. As presented in Figure 1.2, we consider two cut rules: cut which
corresponds to the cut rule in LJ⊃, and cutk which plays the rule of key cuts in typical
cut-elimination procedures. In particular, when we only consider atomic cuts, that is, cuts
having atomic cut formulas, the cut-elimination procedure is fully big-step: cuts are permuted
over synthetic inference rules.

Eliminating cut. Let Π be an LJF⊃ proof of the form

Π1

Γ ⊢ B⇑
Π2

Γ ,B ⊢ C⇑
cut

Γ ⊢ C⇑

where bothΠ1 andΠ2 are cut-free and we have either B⇑ = B ⇑ or B⇑ = B with B atomic (resp.
C⇑ = C ⇑ or C⇑ = C with C atomic). It is not difficult to see that the cut rule can be permuted
through the whole ⇑-phase of Π2. As a result, we can assume that C⇑ = α for some α. We
now distinguish two cases:

1. B is positive. That is, B = β with β positive. ThenΠ1 is of the form

Π′1
Γ ⊢ β or

Π′1
Γ ⊢ β

Sr
Γ ⊢ β⇑

As we mentioned in the previous section, since Π′1 is a proof of a border sequent, it can
be seen as a proof built with synthetic inference rules. Two cases:

• Π′1 ends with a left synthetic inference rule. Π′1 is then of the form

Γ ,Γ1 ⊢ β1 · · · Γ ,Γn ⊢ βn{γ1, . . . ,γm} ⊑ Γ N
Γ ⊢ β

with N ∈ Γ . Note that there is no condition on the R.H.S. β in this synthetic rule.
Such conditions only appear when targ(N) = β is negative, which is not the case
here. Also, as described in Definition 6, we have βi = β for exactly one i. As a
result, we can push this cut upwards through the entire synthetic inference rule.

• Π′1 ends with a right synthetic inference rule. Then we have β ∈ Γ . Now let us
consider Π2. By replacing all the instances of Ir rules matching the R.H.S. of a
sequent with the occurrence β in Γ ,β ⊢ α with one matching with the occurrence

20

β in Γ , we obtain a proof with no Ir rule matching the R.H.S. with the occurrence
β in Γ ,β ⊢ α. By strengthening (Proposition 8), we obtain a cut-free LJF⊃ proof Ξ
of Γ ⊢ α.

By combining the two cases above, we have thus eliminated this occurrence of cut.

2. B is negative. SinceΠ2 is a proof of a border sequent, it can be seen as a proof built with
synthetic inference rules. Consider now all the applications in Π2 of the Dl rule whose
main formula is the occurrence B in Γ ,B:

Ξ
Γ ′,B⇓B ⊢ α′

Dl
Γ ′,B ⊢ α′

We can replace such a Dl rule with a cutk :

Π′1
Γ ′,B ⊢ B⇑

Ξ
Γ ′,B⇓B ⊢ α′

cutk
Γ ′,B ⊢ α′

whereΠ′1 is obtained fromΠ1 by weakening. By applying this to every such Dl rule, we
obtain an LJF⊃ proof of Γ ,B ⊢ α in which B is never the main formula of a Dl rule. By
strengthening (Proposition 7), we obtain an LJF⊃ proof of Γ ⊢ α, with some applications
of cutk .

Eliminating cutk . LetΠ be an LJF⊃ proof of the form

Π1

Γ ⊢ B⇑
Π2

Γ ⇓B ⊢ α
cutk

Γ ⊢ α
We distinguish two cases:

1. B is positive. That is, B = β with β positive. ThenΠ2 is of the form

Π′2
Γ ,B ⊢ α

Rl
Γ ⇓B ⊢ α

Then we can replace the cutk with a cut.

Π1

Γ ⊢ B⇑
Π′2

Γ ,B ⊢ α
cut

Γ ⊢ α

2. B is negative. By expressing B in the form B1 ⊃ · · · ⊃ Bn ⊃ β, Π1 is of the form

Π′1
Γ ,B1, . . . ,Bn ⊢ β

Γ ⊢ B⇑

21

andΠ2 is of the form (
Ξk

Γ ⊢ Bk ⇓

)
1≤k≤n

Π′2
Γ ⇓β ⊢ α

Γ ⇓B ⊢ α

Now as it is often done, we should introduce cuts between sub-proofs Π′1, Ξk , and Π′2, and
consider the following proof Ξ =

Ξ′n
Γ ⊢ Bn⇓ · · ·

Ξ′2
Γ ,B3, · · · ,Bn ⊢ B2⇓

Ξ′1
Γ ,B2, · · · ,Bn ⊢ B1⇓

Π′1
Γ ,B1, · · · ,Bn ⊢ β

cutk
Γ ,B2, · · · ,Bn ⊢ β

icut∗
Γ ⊢ β

Π′2
Γ ⇓β ⊢ α

cutk
Γ ⊢ α

Here we use a cut rule (icut, i for intermediate) that is not included in our definition (Fig-
ure 1.2). This is harmless, as it is easy to transform these cuts into those in the definition. We
now show how to treat cuts of the form

Π1
Γ ⊢ C⇓

Π2
Γ ,C ⊢ α

icut
Γ ⊢ α

If C is negative, then Π1 ends with an Rr rule and we can replace the icut with a cut. If C is
positive, then Π1 is simply made of an Ir rule and we have C ∈ Γ . By replacing in Π2 every Ir
rule involving the occurrence C in Γ ,C ⊢ α with an Ir rule involving the occurrence C in Γ ,
we obtain a cut-free proof of Γ ⊢ α by strengthening.

Therefore, we can remove icut in the left sub-proof of Ξ and transform the sub-proof into
a proof with some occurrences of cut. Now considerΠ′2. If β is negative, thenΠ′2 must end
with an Il and we have α = β. We can then eliminate this bottom-most cutk by considering the
left sub-proof. If β is positive, thenΠ′2 ends with an Rl and we can simply replace this cutk
with a cut.

Summing up. From the description above, we have the following:

• a cut with a positive cut formula can be simply eliminated.

• a cut with a negative cut formula can be replaced by (possibly many) occurrences of
cutk of the same cut formula

• a cutk with a positive cut formula can be replaced by a cut with the same cut formula.

• a cutk with a negative and non-atomic cut formula can be replaced (possibly many)
occurrences of cut with strictly smaller cut formulas.

• a cutk with a negative and atomic cut formula can be simply eliminated.

As a result, the cut-elimination procedure terminates.

22

Remark 3. There exist many different ways in the literature to show how cuts can be eliminated

within focused proofs. The most typical way, such as the one proposed by Liang and Miller [LM09],

is to introduce various cut rules and show how these cuts rules move individual inference rules within

different phases. Proofs following this approach often follow some tedious arguments, because a

rather large number of different cuts are usually needed, given those complicated forms of sequents.

Bruscoli and Guglielmi [BG06] provided a different style of proof of cut elimination in a focused

proof system for linear logic in which they showed how cuts could move through entire phases at

a time. Other phase-based cut-elimination proofs appear also in [Cha08, LM11, Zei08a, Zei08b].

Overviews of such approaches can be found in [Gra14, Sim14].

1.5 Soundness and completeness of LJF⊃
In this section, we show the soundness and completeness of the focused proof system LJF⊃.
The soundness of LJF⊃ is straightforward as its rules are all derivable in LJ⊃ (Proposition 4).

Theorem 5 (Soundness of LJF⊃). If Γ ⊢ B⇑ has a (cut-free) LJF⊃ proof for some polarization,

then there is a (cut-free) LJ⊃ proof of Γ ⊢ B.

For completeness, the original proof given by Liang and Miller in [LM09] is based on a
grand tour through linear logic and via a translation of intuitionistic logic into linear logic as
the LJF system was first designed based on Andreoli’s focused proof system for linear logic.
Here, since we are only interested in a rather small fragment, we propose a simple proof that
uses cut-elimination2 and requires to first prove the admissibility of the initial rule for arbitrary
formulas.

Proposition 14 (Admissibility of the general initial rule). For all Γ , B, and for any polarization,

1. Γ ,B ⊢ B⇑ has an LJF⊃ proof, and

2. Γ ,B ⊢ B⇓ has an LJF⊃ proof.

Proof. It suffices to prove the first point. In fact, the second point is trivial if B is a positive
atom, and otherwise, it follows from the first point by applying the Rr rule. Now we prove the
first point by induction on B.

• B is a positive atom, then we have

Ir
Γ ,B ⊢ B⇓

Dr
Γ ,B ⊢ B

Sr
Γ ,B ⊢ B⇑

• B is a negative atom, then we have

Il
Γ ,B⇓B ⊢ B

Dl
Γ ,B ⊢ B

Sr
Γ ,B ⊢ B⇑

2Completeness proofs of focusing using cut-elimination can also be found in [Gir91, Lau17].

23

• B is an implication, written as B1 ⊃ · · · ⊃ Bk ⊃ α. Then we have

∆ ⊢ B1⇓ · · · ∆ ⊢ Bk ⇓ ∆⇓α ⊢ α
⊃ L∗

Γ ,B1 ⊃ · · · ⊃ Bk ⊃ α,B1, . . . ,Bk ⇓B1 ⊃ · · · ⊃ Bk ⊃ α ⊢ α
Dl

Γ ,B1 ⊃ · · · ⊃ Bk ⊃ α,B1, . . . ,Bk ⊢ α
Sr / ⊃ R∗

Γ ,B1 ⊃ · · · ⊃ Bk ⊃ α ⊢ B1 ⊃ · · · ⊃ Bk ⊃ α⇑

where ∆ = Γ ,B1 ⊃ · · · ⊃ Bk ⊃ α,B1, . . . ,Bk . The first k premises are all provable by i.h.

and the last one is clearly provable.

Theorem 6 (Completeness of LJF⊃). If Γ ⊢ B has a (cut-free) LJ⊃ proof, then there is a (cut-free)

LJF⊃ proof of Γ ⊢ B⇑ for any polarization.

Proof. By induction on the (cut-free) LJ⊃ proofΠ.

• Π consists of the I rule only. Straightforward from Proposition 14.

• Π is of the form
Π′

∆,C,C ⊢ B
C

∆,C ⊢ B
By i.h., there is an LJF⊃ proof Ξ′ of ∆,C,C ⊢ B⇑ for any polarization. By Proposition 14,
there is an LJF⊃ proof Ξ of ∆,C ⊢ C⇑ . We have then

Ξ
∆,C ⊢ C⇑

Ξ′

∆,C,C ⊢ B⇑
cut

∆,C ⊢ B⇑

and by cut-elimination, we obtain a cut-free LJF⊃ proof of ∆,C ⊢ B⇑ .

• Π is of the form
Π1

∆ ⊢ B1

Π2
∆,B2 ⊢ B ⊃ L

∆,B1 ⊃ B2 ⊢ B
By i.h., for any polarization, there is an LJF⊃ proof Ξ1 (resp. Ξ2) of ∆ ⊢ B1⇑ (resp.
∆,B2 ⊢ B⇑). By Proposition 14 and by the invertibility of ⊃ R, there is an LJF⊃ proof Ξ
of ∆,B1 ⊃ B2,B1 ⊢ B2⇑ . We have then

Ξ′1
∆,B1 ⊃ B2 ⊢ B1⇑

Ξ
∆,B1 ⊃ B2,B1 ⊢ B2⇑

cut
∆,B1 ⊃ B2 ⊢ B2⇑

Ξ′2
∆,B1 ⊃ B2,B2 ⊢ B⇑

cut
∆,B1 ⊃ B2 ⊢ B⇑

where Ξ′1 (resp. Ξ
′
2) is obtained from Ξ1 (resp. Ξ) by weakening. By cut-elimination, we

obtain a cut-free LJF⊃ proof of ∆,B1 ⊃ B2 ⊢ B⇑ .

24

• Π is of the form
Π′

Γ ,B1 ⊢ B2 ⊃ R
Γ ⊢ B1 ⊃ B2

By i.h., there is a cut-free LJF⊃ proof Ξ′ of Γ ,B1 ⊢ B2⇑ for any polarization. We have
then

Ξ′

Γ ,B1 ⊢ B2⇑ ⊃ R
Γ ⊢ B1 ⊃ B2⇑

1.6 Extending LJ⊃
In [MMPV22], synthetic inference rules are used as a versatile tool to transform axioms into
sequent rules. More precisely, in order to extend intuitionistic logic (resp. classical logic) with
certain axioms, that is, a set T of formulas, we consider the (unfocused) sequent system LJ

(resp. LK) and extend it with inference rules obtained from the synthetic inference rules of the
formulas from T using the focused proof system LJF (resp. LKF).

As we mentioned earlier, synthetic inference rules define how formulas can be used within
a proof, following the focusing discipline. In LJ, there is more freedom on how a formula can
be used. Typically, if one wants to consider LJ extended with some axioms T , one could simply
consider sequents whose L.H.S. includes T . The main point we want to make here is that we
do not need the freedom that LJ offers on formulas in T : focusing comes to the rescue and
we only need the way they can be used in LJF⊃. Intuitively, we can impose focusing on the
axioms T while maintaining the unfocused LJ.

We now show how such extensions can be defined for LJ⊃. Since synthetic inference rules
depend on the polarization chosen, instead of extending LJ⊃ with a collection of formulas ,we
extend it with a polarized theory.
Definition 9 (Polarized theory). A polarized theory (T ,δ) is a multiset T of formulas together

with an atomic bias assignment δ.

Definition 10 (Extension of LJ⊃ by a polarized theory). Let (T ,δ) be a polarized theory such

that T contains only formulas of order at most 2. Then the extension LJ⊃(T ,δ) of LJ⊃ by the
polarized theory (T ,δ) is defined as the proof system obtained from LJ⊃ by adding, for all

negative formula N ∈ T , the inference rule
Γ ,Γ1 ⊢ α1 · · · Γ ,Γn ⊢ αn{β1, . . . ,βm} ⊑ Γ , (α = β) label(N)

Γ ⊢ α
where

Γ ,N ,Γ1 ⊢ α1 · · · Γ ,N ,Γn ⊢ αn{β1, . . . ,βm} ⊑ Γ , (α = β) N
Γ ,N ⊢ α

is the synthetic inference rule of N , and by adding, for all positive atom α ∈ T , the inference rule
label(α)

Γ ⊢ α
Here, label(B) is a unique label assigned to B ∈ T . Note that Γ1, · · · ,Γn contain only atomic

formulas by Corollary 1.

25

Remark 4. A subtle difference between the definition of extensions here and the one given in

[MMPV22] is that we extend LJ⊃ with a multiset instead of a set of polarized formulas. Apparently,

this choice does not make a difference logically since different occurrences of the same formula

have synthetic inference rules of exactly the same form. In the following chapters, we shall see that

each formula occurrence B ∈ T corresponds to a constructor of type B and it certainly makes

sense to consider different constructors of the same type. This is the reason why we distinguish

formula occurrences in T and their corresponding rules in the extension LJ⊃(T ,δ), by labeling

each of them with a unique label label(B). However, for simplicity, we often ignore labels when

there is no ambiguity (that is, when each formula occurs at most once in T).

Example 2. Let T = {

N1︷︸︸︷
β ⊃ γ,

N2︷ ︸︸ ︷
γ ⊃ γ ⊃ β} and δ :

{
β 7→ +
γ 7→ − . We have the following LJF⊃

derivations:

N1 ⊢ β⇓ N1⇓γ ⊢ α ⊃ L
N1⇓β ⊃ γ ⊢ α

Dl
N1 ⊢ α

and

N2 ⊢ γ
Sr

N2 ⊢ γ ⇑
Rr

N2 ⊢ γ ⇓

N2 ⊢ γ
Sr

N2 ⊢ γ ⇑
Rr

N2 ⊢ γ ⇓
N2,β ⊢ α

Rl
N2⇓β ⊢ α ⊃ L

N2⇓γ ⊃ β ⊢ α
⊃ L

N2⇓γ ⊃ γ ⊃ β ⊢ α
Dl

N2 ⊢ α

Therefore, the extension LJ⊃(T ,δ) contains all the inference rules of LJ⊃ and the following inference
rules:

{β} ⊑ Γ ,α = γ
Γ ⊢ α and

Γ ⊢ γ Γ ⊢ γ Γ ,β ⊢ α
Γ ⊢ α

Notation. We write (Π :)Γ ⊢T ,δ B to express that Γ ⊢ B is provable in LJ⊃(T ,δ) (andΠ is a proof

of it).

The following proposition is straightforward by definition.

Proposition 15. Let T ⊆ T ′ and δ be an atomic bias assignment. Then Γ ⊢T ,δ B implies Γ ⊢T ′ ,δ B.

As in LJ⊃, the ⊃ R rule is invertible in any extension LJ⊃(T ,δ).

Proposition 16 (Invertibility of ⊃ R). If Γ ⊢T ,δ B1 ⊃ B2, then Γ ,B1 ⊢T ,δ B2.

Proof. It suffices to note that the addition rules added to LJ⊃(T ,δ) all have atomic formulas as
their R.H.S..

The following proposition, justifying the above definition of extensions of LJ⊃, can be
easily proved for the full fragment of LJ using delay operators. Intuitively, delay operators
(∂+, ∂−) allow one to impose certain polarity on a formula: ∂+(B) is always positive and ∂−(B)
is always negative for any (polarized) formula B. Moreover, delay operators are definable in
intuitionistic logic. For example, one can define ∂+(B)B B∧+ true+ and ∂−(B)B B∧− true−.
Inserting delays anywhere in a formula B always gives a formula that is logically equivalent
to B in LJF (and in LJ if we forget polarizations). This allows us to simulate all the LJ rules
in LJF without any difficulty (up to the insertion of some delays), which eventually makes

26

the following proposition a simple corollary. However, this approach works for full LJ but
not for LJ⊃, in which delay operators cannot be defined. Therefore, we propose a proof by
a straightforward induction on proofs and by inspecting the structure of synthetic inference
rules.

Proposition 17. Let (T ,δ) be a polarized theory. Then Γ ,T ⊢ B is provable in LJ⊃ if and only if

Γ ⊢ B is provable in LJ⊃(T ,δ).

Proof. In this proof, we will simply view T as a set rather than a multiset of formulas since the
contraction rule C is available in LJ⊃.
(⇒) LetΠ be a cut-free proof of Γ ,T ⊢ B. We proceed by induction onΠ. Since the ⊃ R rule of
LJ is invertible, we only need to treat the case where B = α for some atomic formula α.

• Π ends with a rule whose main formula is not in T . This case is straightforward by i.h.

as LJ⊃(T ,δ) includes all the inference rules of LJ⊃.

• Π ends with a C rule whose main formula is in T . This case is also straightforward by
i.h.

• Π ends with an ⊃ L rule whose main formula C ⊃D is in T . Let T = T ′ ⊎ {C ⊃D}. We
haveΠ =

Π1
Γ ,T ′ ⊢ C

Π2
Γ ,T ′,D ⊢ α ⊃ L

Γ ,T ′,C ⊃D ⊢ α
By i.h., we have Π′1 : Γ ⊢T ′ ,δ C, Π

′
2 : Γ ⊢T ′∪{D},δ α, and Π′′2 : Γ ,D ⊢T ,δ α. Two cases to

consider:

– C is negative under δ. Let C = C1 ⊃ · · · ⊃ Ck ⊃ β with k ≥ 0. By Propositions 15
and 16, we haveΠ′′1 : Γ ,C1, . . . ,Ck ⊢T ,δ β. Two cases to consider:

∗ D is negative under δ. Suppose that the synthetic inference rule of D (under
δ) has the following form:

∆,D,∆1 ⊢ α1 · · · ∆,D,∆n ⊢ αn{γ ′1, . . . ,γ ′m} ⊑ ∆, (γ = γ ′) D
∆,D ⊢ γ

Then the synthetic inference rule of C ⊃D (under δ) is:

∆,C ⊃D,C1, . . . ,Ck ⊢ β ∆,C ⊃D,∆1 ⊢ α1 · · · ∆,C ⊃D,∆n ⊢ αn
C ⊃D

∆,C ⊃D ⊢ γ

with the same synthetic side condition. By definition, their corresponding rules
in the extensions LJ⊃(T ′ ∪ {D},δ) and LJ⊃(T ,δ) only differ by one premise:

∆,C1, . . . ,Ck ⊢ β

Now consider the proof Π′2 of Γ ⊢ α in LJ⊃(T ′ ∪ {D},δ). By replacing each
occurrence of the rule named by D (that is, the one corresponding to the
synthetic inference rule of D) with the rule named by C ⊃D in LJ⊃(T ,δ), we
obtain a proof of Γ ⊢ α in LJ⊃(T ,δ). Indeed, we have to show that the additional

27

premise ∆,C1, . . . ,Ck ⊢ β of each occurrence of the rule named by C ⊃ D is
provable in LJ⊃(T ,δ). Note that we always have Γ ⊆ ∆ by the structure of
the inference rules. Then a proof of such a premise ∆,C1, . . . ,Ck ⊢ β can be
obtained from Π′′1 by weakening.

∗ D is positive under δ. The synthetic inference rule of C ⊃D (under δ) is:

∆,C ⊃D,C1, . . . ,Ck ⊢ β ∆,C ⊃D,D ⊢ γ
∆,C ⊃D ⊢ γ

and its corresponding rule in LJ⊃(T ,δ) is:

∆,C1, . . . ,Ck ⊢ β ∆,D ⊢ γ
∆,C ⊃D ⊢ γ

Then we have:
Π′′1

Γ ,C1, . . . ,Ck ⊢ β
Π′′2

Γ ,D ⊢ α
Γ ⊢ α

in LJ⊃(T ,δ).
– C is positive under δ. By the structure of the inference rules of LJ⊃(T ′,δ),Π′1 has

the following form:
· · ·

I
Γ ′,C ⊢ C

Γ ⊢ C
By applying the same rules (except the I rule), we have the following derivation Ξ

in LJ⊃(T ,δ):
· · · Γ ′,C ⊢ α

Γ ⊢ α
The rest of the proof follows a similar pattern as the previous case, by considering
the polarity of D under δ.

∗ D is negative under δ. Suppose that the synthetic inference rule of D (under
δ) has the following form:

∆,D,∆1 ⊢ α1 · · · ∆,D,∆n ⊢ αn{γ ′1, . . . ,γ ′m} ⊑ ∆, (γ = γ ′) D
∆,D ⊢ γ

Then the synthetic inference rule of C ⊃D (under δ) is:

∆,C ⊃D,∆1 ⊢ α1 · · · ∆,C ⊃D,∆n ⊢ αn{γ ′1, . . . ,γ ′m,C} ⊑ ∆, (γ = γ ′) D
∆,C ⊃D ⊢ γ

Now considerΠ′2. By weakening, there is a proof Ξ′2 : Γ ′,C ⊢T ′∪{D},δ α. Then
by replacing every occurrence of the rule named by D with the one named
by C ⊃ D , with the additional condition (that is, C belonging to the L.H.S.)
verified thanks to the occurrence of C on the L.H.S. of the conclusion, we
obtain a proof of Γ ′,C ⊢ α in LJ⊃(T ,δ). By plugging this proof into the right
premise of the derivation Ξ, we now have a proof of Γ ⊢ α in LJ⊃(T ,δ).

28

∗ D is positive under δ. The synthetic inference rule of C ⊃D is:

∆,C ⊃D,D ⊢ γ
{C} ⊑ ∆ C ⊃D

∆,C ⊃D ⊢ γ

and its corresponding rule in LJ⊃(T ,δ) is:

∆,D ⊢ γ
{C} ⊑ ∆ C ⊃D

∆ ⊢ γ

Then we have:
Ξ′′2

Γ ′,C,D ⊢ α
C ⊃D

Γ ′,C ⊢ α
in LJ⊃(T ,δ) where Ξ′′2 is obtained from Π′′2 be weakening. By plugging the
proof above into the right premise of the derivation Ξ, we obtain a proof of
Γ ⊢ α in LJ⊃(T ,δ).

• Π ends with an I rule on a formula β ∈ T . Two cases to consider:

– α ∈ Γ . This case is trivial.
– α ∈ T . Then LJ⊃(T ,δ) includes the following rule:

α
∆ ⊢ α

which can be used to prove Γ ⊢ α.

(⇐) Let Π : Γ ⊢T ,δ B. We proceed by induction on Π. For a similar reason, we can assume
B = α for some atomic formula α.

• Π ends with an LJ⊃ rule. This case is straightforward by i.h.

• Π ends with a non-LJ⊃ rule of the form

∆,∆1 ⊢ α1 · · · ∆,∆n ⊢ αn{γ ′1, . . . ,γ ′m} ⊑ ∆, (γ = γ ′) C
∆ ⊢ γ

for some C ∈ T . Two cases to consider:

– C is positive under δ. Then C is atomic and we have:

I
Γ ,T ⊢ C

– C is negative under δ. Then we have a LJF⊃ derivation:

C ⊢ γ ′1⇓ · · · C ⊢ γ ′m⇓ C,∆1 ⊢ α1 · · · C,∆n ⊢ αn (C⇓γ ′ ⊢ α)
..... Π

C⇓C ⊢ α
Dl

C ⊢ α

29

By Proposition 4 and by weakening, we have an LJ⊃ derivation:
Ir

C ⊢ γ ′1⇓ · · ·
Ir

C ⊢ γ ′m⇓ Γ ,T ,∆1 ⊢ α1 · · · Γ ,T ,∆n ⊢ αn

(Il
Γ ,T ⇓γ ′ ⊢ α

)
..... Ξ

Γ ,T ⊢ α
since we have γ ′j ∈ Γ ,T for 1 ≤ j ≤m (and α = γ ′). Then we can conclude by i.h.

As one would expect, the cut rule is admissible in LJ⊃(T ,δ) for any polarized theory (T ,δ).
Theorem 7 (Cut admissibility of extensions, [MMPV22]). Let (T ,δ) be a polarized theory. Then
the cut rule is admissible for the proof system LJ⊃(T ,δ).

Proof. Let Π : Γ ⊢T ,δ B. By Proposition 17 and by cut-elimination in LJ⊃, there is a cut-free
proof Ξ of Γ ,T ⊢ B in LJ⊃. Following the induction used in the proof of Proposition 17, we can
obtain a cut-free proof Π′ : Γ ⊢T ,δ B (cuts are only used in the induction step for cuts).

As a result, if not mentioned otherwise, we will only consider cut-free fragments of exten-
sions in the following.

1.7 Restricting to atomic sequents
Throughout the thesis, we will consider some polarized theory (T ,δ) where T contains only
formulas of order at most 2 and consider the extension LJ⊃(T ,δ). We will also focus on a
rather restricted collection of sequents, atomic sequents, which are LJ⊃ sequents consisting
of atomic formulas only. By definitions, construction of proofs in LJ⊃(T ,δ) can use, in addition
to the synthetic inference rules of the formulas from T , all the inference rules of LJ⊃. By
Corollary 1, applying the synthetic inference rule of B ∈ T to an atomic sequent does not add
any non-atomic formula to the L.H.S., which means all the premises are atomic sequents as
well.

Therefore, restricting to proofs of atomic sequents allows us to first eliminate the use of
the ⊃ L and ⊃ R rules. Moreover, the contraction rule is no longer needed, as the contraction
is already (implicitly) included in synthetic inference rules. As a result, when restricting to
atomic sequents, we would rather say that the extension LJ⊃(T ,δ) contains only the I rule of
LJ⊃ and the synthetic inference rules of formulas from T .

In Remark 2, we mention that our definition of synthetic inference rules is equivalent
to the one in [MMPV22] with the presence of contraction. Extensions of LJ⊃, as defined in
Definition 6, can thus be defined using both versions of synthetic inference rules. However,
when only atomic sequents are considered, only our version behaves correctly without the
contraction rule. Let us illustrate this crucial point with the following example:

Example 3. Let T = {

N︷ ︸︸ ︷
β ⊃ β ⊃ β′} and δ :

{
β 7→ +
β′ 7→ +

. Then the extension LJ⊃(T ,δ) defined

using our version of synthetic inference rules contains the following rules:

I
Γ ,α ⊢ α

Γ ,β′ ⊢ α
{β,β} ⊑ Γ N

Γ ⊢ α

30

The extension LJ⊃(T ,δ) defined using the version of synthetic inference rules in [MMPV22] contains

the following rules:

I
Γ ,α ⊢ α

Γ ,γ,γ ⊢ α
C

Γ ,γ ⊢ α
Γ ,β,β,β′ ⊢ α

N ∗
Γ ,β,β ⊢ α

It is clear that the two systems above are equivalent (in terms of provability). It is, however, no

longer the case if we remove the C rule as by doing so, the sequent β ⊢ β′ is provable in the first

system but not the second.

When restricting to atomic sequents, proofs in LJ⊃(T ,δ) have a similar structure to LJF⊃
proofs since they are essentially built with the initial rule and the synthetic inference rules
of formulas from T , which can be seen as LJF⊃ derivations. As one might expect, the cut-
elimination procedure for LJF⊃ presented in Section 1.4 provides a cut-elimination procedure
for LJ⊃(T ,δ). This procedure is, in fact, particularly simple with the absence of non-atomic
formulas, as the tricky case of cutk where intermediate cuts need to be introduced do not exist.

31

32

Chapter 2

Reduction systems and λ-calculus

In this chapter, we introduce the λ-calculus, proposed in 1930s by Alonzo Church as part of
his attempt to the foundations of mathematics. In contrast to the usual "functions-as-graphs"
paradigm in mathematics, it follows the "functions-as-rules" paradigm: for a given function, we
should not only care aboutwhat its outputs are but also how they are obtained. The λ-calculus
can be seen as the very first programming language and has found its applications in the theory
of programming languages over the past century.

Before introducing the λ-calculus, we start with a brief introduction to some basic notions
and notations of reduction systems in Section 2.1. We then give the syntax, basic notions, as
well as some intuitions of the λ-calculus in Section 2.2. In Section 2.3, we introduce two main
styles of evaluation of the λ-calculus, namely the call-by-name style and the call-by-value style.
In the end, we give a brief introduction to explicit substitution, which is the key ingredient of
our study of sharing, in Section 2.4.

2.1 Reduction systems
Fix a set T of terms. A rewrite relation (or reduction relation) →r is a relation on T .
Instead of (t,u) ∈→r, we write t→r u and say that t→r u is a reduction step. We write r←
for the converse of→r,→∗r for its reflexive and transitive closure, and ∗r← for the converse
of →∗r. A (finite) (→r-)reduction sequence d : t →∗r u is a sequence t = t0, . . . , tn = u of
terms such that ti →r ti+1 for 0 ≤ i ≤ n− 1, the length of which is noted |d| (we have |d| = n
here). Moreover, we write |d|a for the number of→a step in d, for a sub-relation→a of→r.
A diverging→r-reduction sequence if an infinite sequence t0, . . . , tn, . . . of terms such that
ti →r ti+1 for all i ≥ 0. A term t is

• →r-normal if there does not exist any term u such that t→r u,

• weakly→r-normalizing if there is a→r-reduction sequence d : t →∗r u with u →r-
normal, and

• strongly→r-normalizing (or→r-terminating) if there is no diverging→r-reduction
sequence starting from t.

A reduction relation→r is strongly normalizing (or terminating) if every term is strongly
→r-normalizing.

33

Given two reduction relations→1 and→2, we write→1→2 for their composition, i.e.,
t→1→2 u if and only if t→1 r and r→2 u for some r .

A rewrite relation→r is
• confluent, if u1 ∗r← t→∗r u2 implies u1→∗r r ∗r← u2 for some r , and

• diamond, if: u1 r← t→r u2 implies u1→r r r← u2 for some r .
If→r is diamond, then it is confluent, and we have:

• Length invariance: all→r-reduction sequences to→r-normal terms starting from the
same term have the same length.

• Uniform normalization: a term t is weakly→r-normalizing if and only if it is strongly
→r-normalizing.

2.2 λ-calculus
Syntax and intuitions. In the λ-calculus, programs, often called (λ-)terms, denoted by
t,u, r, . . ., have the three following forms:

• Variables x,y,z.

• Abstractions λx.t.

• Applications tu, where the term t is said to be applied to the term u.
Intuitively, the abstractionλx.t corresponds to a function thatmaps x to t, while applications

allow applying a term to another term.
The goal of the λ-calculus is to provide a formal and abstract way to describe and reason

about functions. Imagine there is an application tu where t "corresponds to (via some computa-
tion)" the function f : x 7→ x2+x+1 and u "corresponds to" the integer 2, then this application
tu should eventually compute f (2) which is equal to 7. Here, the "corresponds to" part is left
obscure, and should be defined later by the operational semantics of the λ-calculus.

In the above example, whenwe calculate f (2) (on paper), we actually replace the occurrences
of x in x2 + x+1 with 2 and then calculate 22 +2+1. To formally describe such an operation,
we need to have a notion of (meta-level) substitution in the untyped λ-calculus.

However, such a notion of substitution has to be treated with care. Let us consider the
function addy : x 7→ x+ y which takes an integer x as its input and returns the value of x+ y.
Then what is the function addx? The answer is easy: it is the function that adds x to its input
by definition. But how do we write it down explicitly? It is the function addx : y 7→ y + x
or addx : z 7→ z + x. This is just a simple exercise for anyone with some basic knowledge of
mathematics. From this example, we can make the following remarks:

1. Structure of bindings: in a function f : x 7→ f (x), the occurrences of x in f (x) are
bound to its input x, and this function should be the same as the function y 7→ f (y).

2. Syntactic substitution does not always work: if we simply replace y with x "syntacti-
cally" in addy : x 7→ x + y, then we get the function x 7→ x + x, which is obviously not
what we expect.

These remarks show that the structure of bindings should be defined properly and a good
treatment of variables is needed.

34

Free and bound variables, variable renaming, and meta-level substitution. In an
abstraction λx.t, the part λx. is often called a binder, and the variable x is said to be bound in
t. A variable is free if it is not bound. The sets f v(t) and bv(t) of free variables and bound
variables, respectively, of t are defined inductively as follows:

f v(x) = {x}
f v(tu) = f v(t)∪ f v(u)

f v(λx.t) = f v(t) \ {x}

bv(x) = ∅
bv(tu) = bv(t)∪ bv(u)

bv(λx.t) = bv(t)∪ {x}
Consider f : x 7→ x and g : y 7→ y. It is clear that f and g denote the same function,

and similarly, the λ-terms λx.x and λy.y are often considered equivalent, or more precisely,
α-equivalent. To formally define this, we first define a notion of variable renaming. A
variable renaming is of the form {x�y} and the result t{x�y} of applying a variable renaming
{x�y} to a λ-term t is defined inductively as follows:

x{x�y} B y
z{x�y} B z if z , x

(t1t2){x�y} B t1{x�y}t2{x�y}
(λx.t′){x�y} B λx.t′

(λz.t′){x�y} B λz.t′{x�y} if z , x
Note that we will only consider t{x�y} when y < bv(t) in the following.

Theα-equivalence is defined as the smallest congruence containing the following equation:

λx.t =α λy.t{x�y}

where y does not appear in t.
In the following, we should always consider terms up to the α-equivalence. In other words,

we are always allowed to rename bound variables when needed and assume that all bound
variables are distinct.

Generalizing the notion of variable renaming, ameta-level substitution is of the form
{x�t}, having "replacing all free occurrences of x with t" as its meaning. The result t{x�u} of
applying a meta-level substitution {x�u} to a λ-term t is defined inductively as follows:

x{x�u} B u
y{x�u} B y if y , x

(t1t2){x�u} B t1{x�u}t2{x�u}
(λx.t′){x�u} B λx.t′

(λy.t′){x�u} B λy.t′{x�u} if y , x and y < f v(u)

Note that we assume that y does not appear free in u in the last clause. Such an assumption
(called capture-avoiding) is always possible, thanks to an on-the-fly α-equivalence step: if y
appears in u, we should consider a fresh variable z and replace λy.t′ with λz.t′{y�z} before
following the clause.

Reduction of λ-terms. Now that we have defined our notion of substitution, we should be
able to give a formal notion of computation, which in turn provides a notion of semantics to
the λ-calculus.

The computation of the λ-calculus is extremely simple, defined using a single rewrite rule,
called the β-rule:

(λx.t)u 7→β t{x�u}

35

Notation. In this thesis, we use the notation 7→r to denote the base cases of reduction rules,

which which we will call root reduction rules.

Various notions of reduction can be defined via different notions of contexts. In particular,
we consider here two notions of contexts, namely strong contexts and weak contexts, defined
as follows:

Strong contexts C F ⟨·⟩ | tC | Cu | λx.C
Weak contexts W F ⟨·⟩ | tW |Wu

Strong contexts allow reduction to be applied everywhere while weak contexts forbid reduction
under abstractions. Formally, strong reduction→β and weak reduction→oβ are defined as
follows:

t 7→β u

C⟨t⟩ →β C⟨u⟩

t 7→β u

W ⟨t⟩ →oβ W ⟨u⟩
A subterm of the form (λx.t)u of a term r is called a (β-)redex.

2.3 Evaluation: call-by-name and call-by-value
While there is only one rule (the β-rule) in the λ-calculus, there exist often various ways to
reduce a λ-term t. Consider the following term

(λx.xx)((λy.y)z)

There are two different redexes in this term which leads to the following reduction sequences.

(λx.xx)((λy.y)z)

((λy.y)z)((λy.y)z)

(λx.xx)z

z((λy.y)z)

zz

The top sequence reduces the outermost redex first and creates two copies of the innermost
redex, while the bottom sequence reduces the innermost redex first. As a result, the top
sequence requires one more step to reach the final term zz than the bottom sequence. This is
due to the fact that the argument (λy.y)z of the outermost redex is not β-normal. As a result,
different styles of evaluation have been proposed based on various restrictions on β-redexes.

Church’s β-rule implements the call-by-name style. Any β-redex can be reduced without
any further restriction. This style of evaluation can often be expensive: when the argument of
a redex includes some redexes itself, reducing the redex could create multiple copies of these
redexes in the argument, as shown by the above example.

Another "mainstream" style is the call-by-value style. A value, denoted by v,v′, . . ., is
either a variable or an abstraction. The call-by-value style asks that a β-redex can only be
reduced if its argument is a value. According to Plotkin [Plo75], such a restriction can be done
by replacing the β-rule with the following βv-rule:

(λx.t)v 7→βv t{x�v}

36

As one can see, the shorter sequence in the above example, that is, the bottom sequence, is the
only possible reduction sequence in call-by-value. However, call-by-value is not always "the
better style". Consider, for example, the λ-term (λx.y)((λz.z)w).

In call-by-name, we are able to reach the result y in one step:

(λx.y)((λz.z)w)→β y

while in call-by-value, we are forced to first evaluate the argument (λz.z)w before erasing it
with the outermost β-redex, leading to the reduction sequence

(λx.y)((λz.z)w)→βv (λx.y)w→βv y

To sum up, neither call-by-name nor call-by-value evaluation is constantly better than the
other, but one might choose one over the other for specific purposes.

2.4 Explicit substitution
In the λ-calculus, one step of reduction involves the use of meta-level substitutions, which can
be quite heavy work when the variable x to be replaced occurs multiple times. Moreover, such
a meta-level notion is tricky to work with when one moves from the abstract side (calculus) to
the concrete side (implementation). Intuitively, the idea of explicit substitution is to make the
process of computing meta-level substitutions explicit in the calculus itself, by extending the
syntax of the calculus and by computing meta-level substitutions using a number of rewrite
rules. Such an idea of having substitutions as part of the calculus and not of the meta-theory
was first introduced by Abadi et al. in their seminal paper [ACCL91] on λσ -calculus.

An explicit substitution is of the form [x�t]. It can be seen as a way to introduce sharing
and delay substitutions. More precisely, the β-rule now becomes:

(λx.t)u→ t[x�u]→∗ t{x�u}

where the →∗ part involves various rewrite rules on explicit substitutions. Intuitively, in
t[x�u], the variable x is used to share the sub-term u (between possibly many occurrences of
x) in t. This is the starting point toward a good structure-sharing mechanism, without which
performing substitutions can cause size explosions.

Explicit substitutions are closely related to let expressions: t[x�u] can be seen as the term
let x = u in t. In this thesis, we are particularly interested in call-by-value settings, and there
are, indeed, many works on call-by-value with explicit substitutions (for example, in Moggi
[Mog88, Mog89]). Note that in let x = u in t, the sub-term u is often assumed to be evaluated
before t (for example, in Sabry and Wadler [SW97] and in Levy et al. [LPT03]), but such an
assumption is dropped here for our study of sharing.

For the purpose of the thesis, we do not give detailed definitions of any calculus with explicit
substitutions here. As we shall see in Chapter 6, there are various ways to design/classify
call-by-value calculi with explicit substitutions, based on which our calculus of interest, the
positive λ-calculus, defined in Chapter 5, stands out from the existing calculi.

37

38

Part II

Proofs as terms

39

Chapter 3

Polarizations, structure of proofs, and
term annotations

In this chapter, we discuss the impact polarizations have on the structure of proofs and describe
how different styles of term representation arise from making particular choices of polarizing
atomic formulas. In particular, we consider the two uniform polarizations δ− and δ+, and
give the inference rules in their corresponding extensions by a fixed multiset of formulas (of
order at most 2) in Section 3.1. In Section 3.2, we show how term structures can be designed
by annotating inference rules and proofs, and discuss operations such as substitution and
equality checking. In particular, we define the negative bias syntax and the positive bias syntax,
following the two uniform polarizations. Despite the fact that we focus mainly on cut-free
proofs, we show in Section 3.3 how cut-elimination provides a natural notion of (meta-level)
substitution on terms. A natural question arises with the definition of the negative bias syntax
and the positive bias syntax. How can terms built with these two syntaxes be compared? We
address this question in Section 3.4 by giving a way to transform a positively-polarized LJF⊃
proof into a negatively-polarized one. In Section 3.5, we apply our approach to obtain two
different representations of untyped λ-terms. Finally, we discuss in Section 3.6 various aspects
and related works.

3.1 Polarizations and structure of proofs

As stated by Liang and Miller in [LM09], polarizations do not affect the provability of a given
sequent in LJF⊃ (Theorem 2). It is known that different choices of polarizing atomic formulas
can have a major impact on the shape of proofs. We show in the following that such a
phenomenon can also be found in extensions of LJ⊃ with polarized theories. First, thanks to
Proposition 17, extensions of LJ⊃ with the same multiset of formulas but different polarizations
all have the same logical power. Let us now describe what proofs look like in these extensions
with the following example.

Example 4. Let Bn = α0 ⊃ · · · ⊃ αn for n ≥ 0, where αi are all atomic. Consider the theory

T = {B1, . . . ,Bk}. Since there are k + 1 atomic formulas in T , there are 2k+1 different ways of

polarizing these atomic formulas. Here, we consider the only two uniform ones, δ− and δ+, such that
δ−(αi) = − and δ+(αi) = + for all i. We call δ− (resp. δ+) the negative bias assignment (resp.
positive bias assignment) or simply negative polarization (resp. positive polarization) in

41

the following.

By using δ−, we have the following LJF⊃ derivation:

Bn ⊢ α0
Sr

Bn ⊢ α0⇑
Rr

Bn ⊢ α0⇓ · · ·

Bn ⊢ αn−1
Sr

Bn ⊢ αn−1⇑
Rr

Bn ⊢ αn−1⇓ Bn⇓αn ⊢ α ⊃ Ln
Bn⇓α0 ⊃ · · · ⊃ αn ⊢ α

Dl
Bn ⊢ α

for all n. Then the extension LJ⊃(T ,δ−) of LJ⊃ by the polarized theory (T ,δ−) includes the initial
rule and the following inference rules:

Γ ⊢ α0
α = α1 B1

Γ ⊢ α
Γ ⊢ α0 Γ ⊢ α1

α = α2 B2
Γ ⊢ α

· · ·
Γ ⊢ α0 · · · Γ ⊢ αk−1

α = αk Bk
Γ ⊢ α

By using δ+, we have the following LJF⊃ derivation:

Bn ⊢ α0⇓ · · · Bn ⊢ αn−1⇓
Bn,αn ⊢ α

Rl
Bn⇓αn ⊢ α ⊃ Ln

Bn⇓α0 ⊃ · · · ⊃ αn ⊢ α
Dl

Bn ⊢ α

for all n. Then the extension LJ⊃(T ,δ+) of LJ⊃ by the polarized theory (T ,δ+) includes the initial
rule and the following inference rules:

Γ ,α1 ⊢ α{α0} ⊑ Γ B1
Γ ⊢ α

Γ ,α2 ⊢ α{α0,α1} ⊑ Γ B2
Γ ⊢ α

· · ·
Γ ,αk ⊢ α{α0, . . . ,αk−1} ⊑ Γ Bk
Γ ⊢ α

Let us interpret these two sets of rules. First, consider the rules given by δ−. The rule named
Bn has exactly n premises. If we read the rule from conclusion to premises, it can be interpreted
as "to use the formula Bn = α0 ⊃ · · · ⊃ αn−1 ⊃ αn, the R.H.S. of the sequent to prove has to be
αn and in this case, the sequents to prove can be obtained from the original one by replacing
the R.H.S. with αi for 0 ≤ i ≤ n−1, respectively". This is often called back-chaining in logic
programming.

Now consider the rules given by δ+. The rule named Bn has only one premise. If we read
the rule from conclusion to premises, it can be interpreted as "to use the formula Bn = α0 ⊃
· · · ⊃ αn−1 ⊃ αn, the L.H.S. of the sequent to prove has to contain αi for 0 ≤ i ≤ n − 1, and
in the case, the sequent to prove can be obtained from the original one by adding αn to the
L.H.S. This is often called forward-chaining in logic programming.

These two opposite polarizations give rise to two extensions of LJ that have the same
logical power, as justified by Proposition 17, and the same number of inference rules, but have
very different styles of rules. Now let us describe what cut-free proofs look like in these two
contrasting settings.

Consider the sequent Sn = α0 ⊢ αn.
This sequent is provable in both LJ⊃(T ,δ−) and LJ⊃(T ,δ+) since α0,B1, · · · ,Bn ⊢ αn is

provable in LJ. Proof search in LJ⊃(T ,δ−) is simple: it is guided by the R.H.S. as each of
its rules (except the initial rule) has exactly one equality condition to satisfy. It is then clear

42

that S has a unique cut-free proof in LJ⊃(T ,δ−). As an example, the unique cut-free proof of
S4 = α0 ⊢ α4 in LJ⊃(T ,δ−) is:

I
α0 ⊢ α0

I
α0 ⊢ α0

B1α0 ⊢ α1

I
α0 ⊢ α0

I
α0 ⊢ α0

B1α0 ⊢ α1
B2α0 ⊢ α2

I
α0 ⊢ α0

I
α0 ⊢ α0

B1α0 ⊢ α1

I
α0 ⊢ α0

I
α0 ⊢ α0

B1α0 ⊢ α1
B2α0 ⊢ α2

B3α0 ⊢ α3
B4α0 ⊢ α4

In LJ⊃(T ,δ+), the situation is completely different. The first difference is that there is no
uniqueness of proofs: if in a proof we apply a rule Bn, then we can obtain another proof by
applying it twice and by increasing accordingly the L.H.S. of all the sequents above in the
original proof. For the same reason, a proof can have an arbitrarily large size, which does not
seem to be a desirable feature. However, among all these proofs, there is a proof with minimal
(actually linear in n) size. As an example, the minimal proof of S4 = α0 ⊢ α4 in LJ⊃(T ,δ+) is:

I
α0,α1,α2,α3,α4 ⊢ α4

B4α0,α1,α2,α3 ⊢ α4
B3α0,α1,α2 ⊢ α4

B2α0,α1 ⊢ α4
B1α0 ⊢ α4

Let us look more carefully at the two proofs above. First, note that in the LJ⊃(T ,δ−) proof,
some sub-proofs have more than one occurrence (for example the proof of α0 ⊢ α1 appears
four times), and this eventually causes the size explosion. Second, in the (minimal) LJ⊃(T ,δ+)
proof, every rule is applied exactly once and each of the atomic formulas α1, . . . ,α4 is added to
the L.H.S. exactly once.

Remark 5 (L.H.S. vs. R.H.S., classical vs. linear, and positive v.s. negative). Here we give
a brief and intuitive explanation of the different behaviors of δ− and δ+. As mentioned earlier,

the rules obtained using δ− are guided by the R.H.S., while the rules obtained using δ+ involve

rather the L.H.S.. A typical difference between L.H.S. and R.H.S. in Gentzen’s LJ is that on the

L.H.S., structural rules such as contraction and weakening are available while on the R.H.S., no
structural rules are permitted, guaranteeing that every sequent in an LJ proof has exactly one

formula on the R.H.S.
In other words, LJ is classical on the left and linear on the right. This also explains why each

of the inference rules in LJ⊃(T ,δ−) that are added to LJ⊃ has exactly one premise while in the

case of δ+, rules can have multiple premises: contractions are left implicit in these rules.

3.2 Annotations and term representation
In this section, following the discussion in Section 3.1, we show how different styles of term
representation arise by considering annotations of inference rules and proofs.

First, as mentioned in Section 1.7, we only consider atomic sequents, i.e., sequents of the
form α1, . . . ,αk ⊢ α, and their proofs. Each atomic formula αi on the L.H.S. shall be annotated
(or labeled) by a (unique) variable (or name) xi and the only atomic formula α on the R.H.S.

43

shall be annotated by a term t, denoted by xi : αi and t : α, respectively. (Annotated) sequents
are therefore of the form x1 : α1, . . . ,xk : αk ⊢ t : α. Note that formulas on the L.H.S. should
have distinct labels: the L.H.S. is now a set of annotated formulas, denoted by Γ . In order to
distinguish the inference rules corresponding to different axioms considered, we often assign a
unique label ci to each formula Bi in the theory used to extend LJ.

Let us now annotate the inference rules considered in the above example. The annotated
inference rules of LJ⊃(T ,δ−) are

I
Γ ,x : α ⊢ x : α

Γ ⊢ t0 : α0
α = α1 c1

Γ ⊢ c1t0 : α

Γ ⊢ t0 : α0 Γ ⊢ t1 : α1
α = α1 c2

Γ ⊢ c2t0t1 : α
· · ·

Γ ⊢ t0 : α0 · · · Γ ⊢ tk−1 : αk−1
α = αk ck

Γ ⊢ ckt0 · · · tk−1 : α
where ck is a constant symbol associated to Bk .

With these annotations, the unique proof of S4 is then represented by the proof term

c4x0(c1x0)(c2x0(c1x0))(c3(x0(c1x0)(c2x0(c1x0))))

in which we can again discover the duplicated patterns, in the form of identical subterms.
We proceed similarly for LJ⊃(T ,δ+) and obtain the following annotated inference rules.

I
Γ ,x : α ⊢ x : α

Γ ,x1 : α1 ⊢ t : α{x0 : α0} ⊆ Γ c1
Γ ⊢ c1x0(λx1.t) : α

Γ ,x2 : α2 ⊢ t : α{x0 : α0,x1 : α1} ⊆ Γ c2
Γ ⊢ c2x0x1(λx2.t) : α

· · ·

Γ ,xk : αk ⊢ t : α{xi : αi}0≤i≤k−1 ⊆ Γ ck
Γ ⊢ ckx0 · · ·xk−1(λxk .t) : α

Here comes the first subtlety: an inclusion condition A ⊑ Γ becomes a condition of the
form {x0 : α0, . . . ,xk−1 : αk−1} ⊆ Γ with A = {α0, . . . ,αk−1}, which is an inclusion condition
between two sets of annotated formulas. Note, however, that αi and αj are not necessarily
distinct for i , j . We have, for example, {x : α,x : α} ⊆ {x : α} (which essentially corresponds
to {α,α} ⊑ {α}).

Note that each of the rules B1, . . . ,Bk introduces an additional binding which essentially
allows sharing within a term. The term c1x0(λx1.t) annotating the conclusion of the B1 rule
shall be interpreted as name x1 = c1x0 in t where x1 is used to name the "sub-structure" c1x0.
We do not call c1x0 a sub-term here since it is not a valid term built with the rules generated by
the positive polarization. However, as one might notice, it can be seen as a term built using the
negative polarization. Indeed, as we shall see later, there is a way to relate these two different
styles of term structures and even compare them.

Now let us generalize the discussion above and show how term representations arise from
the extensions of LJ by a specific theory of order at most 2, that is, a multiset of formulas of
order at most 2, polarized with δ− and δ+, respectively.

44

Notation. Here, we use ∆ and ∆i to denote multisets of atomic formulas. We use the notation x̄
to denote a list of variables, say x1, . . . ,xn for some n ≥ 0, and we shall assume that the variables

x1, . . . ,xn are pairwise distinct if not mentioned otherwise. We write Γ ⊃ B for α1 ⊃ . . . ⊃ αn ⊃ B,
λx̄.t for λx1. · · ·λxn.t, and x̄ : Γ for x1 : α1, . . . ,xn : αn, if Γ = α1, · · · ,αn and x̄ = x1, . . . ,xn.

Let T be a theory containing only formulas of order at most 2. Let B be a formula in T and
c be the constant symbol assigned to it.

Consider first the case where we are using the negative polarization δ−. B can be written as

(∆1 ⊃ α1) ⊃ · · · ⊃ (∆m ⊃ αm) ⊃ α0

where m ≥ 0 and each ∆i is possibly empty. Note that:
• if ord(B) = 0, then m = 0;

• if ord(B) = 1, then m ≥ 1 and every ∆i is empty;

• if ord(B) = 2, then m ≥ 1 and there exists i such that ∆i is non-empty.
In any case, the formulas ∆1 ⊃ α1, . . . ,∆m ⊃ αm all have the negative polarity since every

formula is negative under δ−. Then we have the following LJF⊃ derivation:
B,∆1 ⊢ α1

Sr / ⊃ R∗
B ⊢ ∆1 ⊃ α1⇑

Rr
B ⊢ ∆1 ⊃ α1⇓ · · ·

B,∆m ⊢ αm
Sr / ⊃ R∗

B ⊢ ∆m ⊃ αm⇑
Rr

B ⊢ ∆m ⊃ αm⇓ B⇓α0 ⊢ α ⊃ Lm
B⇓ (∆1 ⊃ α1) ⊃ · · · ⊃ (∆m ⊃ αm) ⊃ α0 ⊢ α

Dl
B ⊢ α

Then the corresponding inference rule in the LJ⊃(T ,δ−) can be written as

Γ , x̄1 : ∆1 ⊢ t1 : α1 · · · Γ , x̄m : ∆m ⊢ tm : αm
α = α0 B

Γ ⊢ c(λx̄1.t1) · · · (λx̄m.tm) : α
Now consider the case where we are using the positive polarization δ+. This time, we

choose to express B in a different way. By considering the logical equivalence B1 ⊃ B2 ⊃ C ≡
B2 ⊃ B1 ⊃ C, B can be written as:

∆0 ⊃ (∆1 ⊃ α1) ⊃ · · · ⊃ (∆m ⊃ αm) ⊃ α0

with∆1, . . . ,∆m non-empty. Using such an equivalence is harmless because equivalent formulas
have the same synthetic inference rule (up to permutation of premises).

If B is positive, then m = 0, ∆0 is empty, and B = α0. The inference rule added to the
extension LJ⊃(T ,δ+) is

B
Γ ⊢ c : α0

If B is negative, then we have the following LJF⊃ derivation:

{
B ⊢ βj ⇓

}
βj∈∆0

B,∆1 ⊢ α1
Sr / ⊃ R∗

B ⊢ ∆1 ⊃ α1⇑
Rr

B ⊢ ∆1 ⊃ α1⇓ · · ·

B,∆m ⊢ αm
Sr / ⊃ R∗

B ⊢ ∆m ⊃ αm⇑
Rr

B ⊢ ∆m ⊃ αm⇓
B,α0 ⊢ α

Rl
B⇓α0 ⊢ α

⊃ L∗
B⇓∆0 ⊃ (∆1 ⊃ α1) ⊃ · · · ⊃ (∆m ⊃ αm) ⊃ α0 ⊢ α

Dl
B ⊢ α

45

Now the inference rule added to the extension LJ⊃(T ,δ+) can be written as

Γ , x̄1 : ∆1 ⊢ t1 : α1 · · · Γ , x̄m : ∆m ⊢ tm : αm Γ , y : α0 ⊢ t : α{yj : βj ∈ Γ }1≤j≤n B
Γ ⊢ name y = cy1 · · ·yn(λx̄1.t1) · · · (λx̄m.tm) in t : α

with ∆0 = β1, . . . ,βn.
Intuitively, the firstm premises build abstracted arguments and the last premise continues

to build a term of type α but with an additional variable y of type α0 this time.
From the two atomic bias assignment δ− and δ+, we have derived two very different term

structures, namely the negative bias syntax and positive bias syntax.
The negative bias syntax is the usual tree-like syntax. Intuitively, to build a term with the

constant c of type B = (∆1 ⊃ α1) ⊃ · · · ⊃ (∆m ⊃ αm) ⊃ α0, we need to build abstractions of
type ∆i ⊃ αi for 1 ≤ i ≤m and obtain a term of type α0 in the end.

The positive bias syntax is a syntax that allows sharing within a term. Together with the
initial rule, we can see that a term in the positive bias syntax is essentially a list of namings
(or named/shared structures) built using the name construct followed by a variable (or
constant). In name y = cy1 · · ·yn(λx̄1.t1) · · · (λx̄m.tm) in t, the name y is bound in t and is used
to share the structure cy1 · · ·yn(λx̄1.t1) · · · (λx̄m.tm). As we shall see in Section 3.4, there is a
systematic way to transform a term in the positive bias syntax into a term in the negative bias
syntax, and such a transformation eventually justifies our notion of sharing.

Remark 6 (Positive atoms and sharing). To understand why δ+ induces a syntax where sharing

is possible, we should go back to LJF, which was designed based on Andreoli’s triadic system Σ3
via a translation of intuitionistic logic into linear logic. In Σ3, there are two identity (initial) rules:

I1⊢ Γ : α ⇓ α⊥
I2⊢ Γ ,α : · ⇓ α⊥

In a Σ3 sequent, the leftmost zone is unrestricted while the second zone is linear: the sequent
⊢ Γ : ∆ ⇕ B corresponds to the two-sided LL sequent !Γ ⊥ ⊢ ∆,B.

Let us now interpret the two identity rules. Intuitively, the I1 rule proves the atom α while

having a single copy of α. On the contrary, the I2 rule proves α while having an unlimited
number of copies of α. By Liang and Miller’s translation [LM09] from intuitionistic logic to

linear logic, the Il rule of LJF (for negative atoms) essentially corresponds to I1 while the Ir rule
(for positive atoms) corresponds to I2. This explains why proofs/term structures built using δ+

enjoy sharing within them.

3.3 Cut-elimination and (meta-level) substitution
Cut-elimination might seem irrelevant since terms are only designed for cut-free proofs. How-
ever, introducing a cut between two cut-free proofs and eliminating it provides a natural and
simple notion of (meta-level) substitutions. We now illustrate this with the two syntaxes
obtained previously.

Consider the following cut:

Π1
Γ ⊢ α

Π2
Γ ,α ⊢ β

cut
Γ ⊢ β

46

When α is negative, the cut is pushed upwards into the right sub-proofΠ2 and becomes
key cuts cutk of the same cut formula which can be in turn eliminated directly. This provides a
definition of meta-level substitution for the negative bias syntax:

t[x/u] = t{x�u}

where the right-hand side denotes the result of replacing every occurrence of x with u in t.
When α is positive, the cut is pushed into the left sub-proofΠ1 until the (unique)Dr rule on

α. Such a consideration invites us to express u as E⟨y⟩ (this notation will be formally introduced
later) where E essentially corresponds to a list of namings name x1 = · · · in · · ·name xk =
· · · in and y is the variable at the end. The LJF⊃ cut-elimination suggests the following definition
of meta-level substitution for the positive bias syntax:

t[x/E⟨y⟩] = E⟨t{x�y}⟩

Let us consider T = {α ⊃ α ⊃ α}. Then with a constant symbol c associated with the only
formula in T , the negative bias syntax is given by the following grammar:

tF x | ctu

while the positive bias syntax is given by:

tF x | name x = cyz in t

The meta-level substitution for the negative bias syntax actually coincides with the typical
definition:

x[x/u] = u
y[x/u] = y if y , x

(ct1t2)[x/u] = c(t1[x/u])(t2[x/u])

The meta-level substitution for the positive bias syntax can be equivalently defined in a small-
step style.

t[x/y] = t{x�y}
t[x/name y = czw in u] = name y = czw in t[x/u]

Note that in the negative bias syntax, duplications of terms are necessary when computing
meta-level substitutions, while in the positive bias syntax, such duplications do not exist, and
the result of substituting a term for a variable in another term simply looks like the juxtaposition
of the two terms, with a variable renaming. With this example, we can see how the positive
bias syntax differs from the negative bias syntax in the aspect of sharing.

3.4 Positive to negative
The key theorem of LJF [LM09] states that the provability of a sequent does not depend on the
polarization chosen. This result also holds in the case of extensions thanks to Proposition 17.
A natural question to ask is then: "Is there a systematic way to transform proofs built with
one polarization into proofs built with another?" In this section, we focus on the two uniform
polarizations δ− and δ+ and give a systematic method for converting an LJ⊃(T ,δ+) proof (of an
atomic sequent) into an LJ⊃(T ,δ−) proof. The other direction is also possible but not discussed
here.

47

Theorem 8. Let S be an atomic sequent andΠ be a cut-free LJ⊃(T ,δ+) proof of S . Then there is

a cut-free LJ⊃(T ,δ−) proof Ξ of S .

Proof. We proceed by induction onΠ:
• Π consists of the I rule only. ThenΠ can also be seen as a cut-free LJ⊃(T ,δ−) proof of
S as both extensions include the I rule.

• Π ends with the rule added to LJ⊃(T ,δ+) corresponding to the formula B ∈ T . We
distinguish two cases:

– B is atomic. ThenΠ =

Γ ⊢ B
This case is straightforward since the rule added to LJ⊃(T ,δ−) corresponding to B
has exactly the same form.

– B is non-atomic. Then we can write B as ∆0 ⊃ (∆1 ⊃ α1) ⊃ · · · ⊃ (∆m ⊃ αm) ⊃ α0
with ∆1, . . . ,∆m non-empty. Π is of the form

Π1
Γ ,∆1 ⊢ α1 · · ·

Πm
Γ ,∆m ⊢ αm

Π0
Γ ,α0 ⊢ α

B
Γ ⊢ α

with ∆0 ⊑ Γ . By i.h., there are LJ⊃(T ,δ−) proofs Ξk of Γ ,∆k ⊢ αk for 1 ≤ k ≤ m,
and an LJ⊃(T ,δ−) proof Ξ0 of Γ ,α0 ⊢ α. Then we have the following LJ⊃(T ,δ−)
proof:

I
Γ ⊢ β1 · · ·

I
Γ ⊢ βn

Ξ1
Γ ,∆1 ⊢ α1 · · ·

Ξk

Γ ,∆k ⊢ αk
B

Γ ⊢ α0

Ξ0
Γ ,α0 ⊢ α

cut
Γ ⊢ α

where β1, · · · ,βn = ∆0. By cut-elimination, we obtain a cut-free LJ⊃(T ,δ−) proof of
Γ ⊢ α.

Note that the above proof indeed gives a systematic way (an algorithm) to obtain a cut-free
LJ⊃(T ,δ−) proof from a cut-free LJ⊃(T ,δ+). By annotating these proofs, we now have a way
to transform a term t in the positive bias syntax into a term pton(t) in the negative bias syntax:

• If t is a variable x, then pton(t) = x.

• If t is a constant c (this is the case when the formula B considered in the above proof is
atomic), then pton(t) = c.

• If t is the term name y = cy1 · · ·yn(λx̄1.t1) · · · (λx̄m.tm) in u, then by the discussion in
Section 3.3, we have pton(t) = pton(u){y�cy1 · · ·yn(λx̄1.pton(t1)) · · · (λx̄m.pton(tm))}.

Intuitively, computing pton(t) consists of unfolding all the shared structures in t.
It is also possible to transform a term in the negative bias syntax into a term in the positive

bias syntax. Intuitively, it consists of introducing a naming for every non-variable subterm. As
a result, despite being a term in the positive bias syntax, the term obtained does not benefit
from sharing as every name introduced with a naming is used exactly once. That is the reason
why we decided not to detail it here.

48

3.5 Encodings of untyped λ-terms
In this section, we present two encodings of untyped λ-terms, obtained by applying our
approach to a specific set of axioms.

We consider the (labeled) theory T0 = {app : D ⊃ D ⊃ D,abs : (D ⊃ D) ⊃ D} and the
polarizations δ− and δ+. By following the approach presented in Section 3.2, we obtain the
annotated inference rules of the two extensions LJ⊃(T0,δ−) and LJ⊃(T0,δ+) of LJ, shown in
Figure 3.1 and Figure 3.2. Note that we add an n or p in front of rule names to distinguish rules
arising from these two different polarizations.

These rules give rise to two very different presentations of untyped λ-terms, namely
the negative λ-terms and the positive λ-terms. Negative λ-terms are exactly the usual λ-
terms, with one rule for applications and another one for abstractions, without any possible
sharing within a term. On the contrary, positive λ-terms are quite unusual, with no standalone
applications and abstractions: these structures can only be introduced via namings (or explicit
substitutions, as we shall see later). This exotic feature, however, provides the possibility to
share sub-structures within a term.

Notation. For simplicity, we will write name x = yz in t for name x = app y z in t and
name x = λy.u in t for name x = abs (λy.u) in t, and these notations can be further abbreviated
as t[x�yz] and t[x�λy.u], respectively.

�
�

�

nvar
Γ ,x :D ⊢ x :D

Γ ⊢ t :D Γ ⊢ u :D
napp

Γ ⊢ app t u :D
Γ ,x :D ⊢ t :D

nabs
Γ ⊢ abs (λx.t) :D

Figure 3.1: Negative λ-terms.

'

&

$

%

pvar
Γ ,x :D ⊢ x :D

Γ ,x :D ⊢ t :D
y :D,z :D ⊆ Γ papp

Γ ⊢ name x = app y z in t :D

Γ , y :D ⊢ u :D Γ ,x :D ⊢ t :D
pabs

Γ ⊢ name x = abs (λy.u) in t :D

Figure 3.2: Positive λ-terms.

The syntax of positive λ-terms is relatively restricted:

• The only standalone expressions of the (usual) λ-calculus are variables. Applications and
abstractions can only be introduced using a name expression. Here, we can also observe
an interesting duality as variables cannot be shared using a name expression.

• Both immediate subterms of an application can only be variables.

These restrictions are harmless, in the sense that they still provide enough expressiveness
and we shall see in Chapter 6 that the compactness of positive λ-terms provides a natural
way to define reduction and captures a specific notion of sharing.

49

Negative λ-terms are usually connected with top-down constructions or tree-like structures.
Analogously, positive λ-terms can be connected with bottom-up constructions or DAG-like
structures. For instance, the negative λ-term f (gx)(gx) (resp. the positive λ-term name y =
gx in name z = f y in name w = zy in w) can be expressed using the following tree (resp.
DAG):

@

f @

@

g x

@

g x

@

f @

@

g x

Note that the names y, z, and w introduced by the name construct in the positive term are
invisible in the corresponding DAG: they are bound in the term and correspond to the internal
nodes (all labeled by @ here).

Comparing positive and negative λ-terms. Following the discussion in Section 3.4, we
can define a translation from positive λ-terms to negative λ-terms, by simply unfolding all
the namings.

Definition 11. The unfolding t of a positive λ-term t is the untyped λ-term defined as follows:

x = x name x = yz in t = t{x�yz} name x = λy.s in t = t{x�λy.s}

where {·�·} is the usual meta-level substitution of untyped λ-calculus.

Thanks to this definition, we can now compare a positive λ-term t with a negative λ-term u:
t and u are equal if t = u (up to α-equivalence). Moreover, it provides a reasonable definition
of equality on positive λ-terms: two positive λ-terms are considered equal if they have the
same unfolding.

Now a natural question arises:

How to check if two positive λ-terms are equal?

Traces and trace equivalence. A way to compare untyped λ-terms is to compare their
traces. Intuitively, traces of a term t are defined by probing the term t and they correspond
essentially to paths from the root to a leaf in the term graph of t.

We now describe how a trace of a negative λ-term can be described and give the λProlog
specifications that implement it. We first check the top-level constructor. If it is an application,
then we can continue to develop a trace by examining either the first or the second argument
and by remembering the choice made. If it is an abstraction, then we continue by examining
the body of the abstraction and by keeping the structure of the binding. Reaching a variable
means that a complete trace has been found.

Traces can be specified using trace predicates using a language such as λProlog. To begin,
the following declarations define the datatype of traces through untyped λ-terms.

50

kind trace type.
type left, right trace -> trace.
type bnd (trace -> trace) -> trace.

The traces of negative λ-terms are specified using the predicate ntrace, where ntrace t p
means that p is a trace of the term t.
type ntrace tm -> trace -> o.

In order to deal with free variables, we have to add the following declarations for each free
variable w considered.
type w var.
type wtrace trace.

We can then define the unique trace through a free variable.
ntrace (nvar w) wtrace.

Traces through applications and abstractions can be specified as follows.
ntrace (napp M _) (left P) :- ntrace M P.
ntrace (napp _ N) (right P) :- ntrace N P.
ntrace (nabs R) (bnd P) :- pi x\pi p\ ntrace (nvar x) p =>

ntrace (R x) (P p).

For positive λ-terms, we proceed similarly for free variables.
type ptrace tm -> trace -> o.

ptrace (pvar w) wtrace.

Traces through a positive λ-term can be then specified as follows.
ptrace (papp U V K) P :-

pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U)
P) =>

(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V)
P) =>

ptrace (K x) P.
ptrace (pabs R K) P :-

pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-
pi p\ pi u\ ptrace (pvar u) p => ptrace (R u)

(Q p))
=> ptrace (K x) P.

We say that two (positive or negative) λ-terms are trace equivalent if they have the same
traces. It is easy to show that two negative λ-terms are trace equivalent if and only if they are
α-equivalent. Moreover, a positive λ-terms is trace equivalent to its unfoldings. Therefore,
two positive λ-terms are trace equivalent if and only if they have the same unfolding (up
to α-equivalence), which makes the trace equivalence coincide with the equality we defined
earlier.

Now we can compare two (positive or negative) λ-terms by simply comparing their traces.
Note that in λProlog, it is possible to rediscover a term from the list of its traces, using a query
such as

51

?- forall (ntrace T) [(bnd (u\ left (bnd (v\ left u)))),
(bnd (u\ left (bnd (v\ right v)))),
(bnd (u\ right u))].

T = nabs (u\ napp (nabs (v\ napp (nvar u) (nvar v))) (nvar
u))

(see also [MN12, Section 7.4.2]). However, such an approach can still be costly as listing all the
traces of a term may require exponential time with respect to the size of a term, as shown by
the following term

tn = name x1 = x0x0 in name x2 = x1x1 in · · ·name xn = xn−1xn−1 in xn

In [CAC19], a linear algorithm for checking sharing equality, essentially the equality consid-
ered here, is proposed using bisimulation on λ-graphs, a kind of term graphs for λ-terms with
sharing. As we shall see in Chapter 4, it is possible to consider a graphical representation for
positive λ-terms that can be seen as a refinement of λ-graphs, which makes their algorithm
perfectly applicable to our setting.

3.6 Aspects and related works
In this section, we briefly mention some aspects of our approach and some related works.

Intermediate representation of programs. The name expressions used above resemble
the more common let expressions, but we prefer using name instead of let at this point as
the let-expression “let x = r in t” often corresponds to a proof with cuts since it sometimes
abbreviates the β-redex (λx.t)r (in its spirit). In contrast, if t corresponds to a cut-free proof,
then the term “name x = r in t” does too. In other words, from the author’s personal perspective,
let expressions refer more to "programs", while name expressions refer to "terms", which can
be some static objects without a notion of computation.

Another point that is worth mentioning is that our name expressions are pretty restricted.
When we write name x = r in t, r cannot be anything: it is either an abstraction or an
application of a variable to other variables. There is however no loss in expressivity as it is
common for intermediate representations of programs to have less freedom in how an
expression can be written. A typical intermediate representation of programs in compilers
of functional programming languages is the A-normal form (ANF) [FSDF93] in which all
arguments to functions are values, that is, either constants, variables, or λ-abstractions. Clearly,
terms in the positive bias syntax are in A-normal form.

Various other term representations have been developed for focused proofs that contain
more logical connectives and inference rules than we have considered here. See, for example,
[CP03, Her95, Sim14]. Note that atomic formulas are all treated as given the negative polarity
in these references.

Encoding functional expressions as relations. When a programmer needs to compute the
value of a mathematical expression, such as

√
b2 − 4ac, in a logic programming language such

as Prolog, it is necessary to explicitly convert the calls to various functions (here, subtraction,
addition, multiplication, and square root) into their corresponding relations. For example,
addition on real numbers is usually represented by a three-place predicate plus such that

52

the atomic formula (plus x y z) holds if and only if x + y = z. Now assume that relations
are available to encode each primitive function. One way to organize the relations needed to
compute the expression above involves converting that expression into positive bias syntax.
For example, the function-based expression above can be written as

name n1 = b × b in name n2 = 4× a in name n3 = n2 × c in
name n4 = n1 −n3 in name n5 =

√
n4 in ⌈n5⌉.

As described in [GM17], it is straightforward to convert such an expression into a series
of calls to predicates. In particular, we can rewrite this expression by replacing [name n =
f x1 · · · xi in •] with [∃n.(Rf x1 · · · xi n) ∧ •], where Rf is a relation that computes the
function f . Assuming that times, minus, and sqrt are all relations that compute multiplication,
subtraction, and the (positive) square root, then the relational presentation can be given as

∃n1. times b b n1∧∃n2. times 4 a n2∧∃n3. times n2 c n3∧∃n4.minus n1 n3 n4∧∃n5. sqrt n4 n5,

which is an expression that is easily written as a Prolog goal formula.

Proofs as terms but not (yet) proofs as programs. A crucial point in our study of proofs
and term annotations is that no notion of computation is defined on terms so far. In particular,
the cut-elimination procedure is only applied to some specific form of proofs (a cut with two
cut-free sub-proofs). This feature distinguishes our approach from the other existing studies of
term structures based on focused proof systems, such as λµµ̃-calculus by Curien and Herbelin
[CH00], system L by Munch-Maccagnoni [Mun09]. That is also the reason why we prefer using
proofs as terms instead of proofs as programs as our slogan in this chapter.

53

54

Chapter 4

Terms and graphs

As mentioned in the previous chapter, terms without sharing (negative λ-terms for example),
are often connected with trees while terms with sharing are often connected with DAGs. It is
then natural to look for a graphical representation for positive λ-terms. We start by giving
the general idea of this chapter in Section 4.1. We then define in Section 4.2 the structural
equivalence on positive λ-terms based on permutations of namings. In Section 4.3, we
introduce a graphical representation of positive λ-terms, called λ-graphs with bodies, that
is then shown to factorize positive λ-terms by the structural equivalence in Section 4.4. We
conclude this chapter by giving some remarks and related works in Section 4.5. The content of
this chapter is based on [Wu23].

4.1 Trees and graphs

Trees and graphs are common in computer science. They not only provide rich structure but
also allow organizing data or expressing systems in a meaningful way. Examples are many in
various domains of computer science (binary trees, automata, Petri nets, etc). Programming
languages are not an exception. Tree structures are often exploited in a setting without sharing.
A typical example is abstract syntax trees (AST) which essentially re-organize (different parts
of) a program into an abstract syntactic structure with the help of trees. Such an approach
would represent a term xx (a variable x applied to x) as a tree having a node (corresponding to
the application) with two "distinct" children nodes both labeled by x. However, with such an
approach, it is impossible to express the fact that the variable x is applied to "itself". For this, it
is necessary to express sharing (labels or names of variables are just a special case of sharing).
Trees are not enough and a special class of graphs, called directed acyclic graphs (DAGs), are
often used instead. Intuitively, nodes no longer stand for a single, non-shared sub-structure,
but rather a structure that can be shared (or used) by different parts of the whole structure.
The self-application term xx can thus be represented by a graph with a node (corresponding to
the application) with two distinct edges to the "same" child node labeled by x.

λ-terms can be represented "naively" as trees, with three kinds of nodes: application,
abstraction, and variable. For example, the term (λx.x)y can be represented as the following
tree:

55

@

λx y

x

To properly handle bindings, a name-less presentation of bound variables is often preferred:

@

λ y

It is common to draw a "back-edge" from a bound variable node to its corresponding abstraction
node, but here we prefer a "colored" version, with the frame of the bound variable node in
the same color as the λ. This naive presentation of λ-terms, however, does not provide much
benefit, as the size of a λ-term is exactly the same as its graph, and the β-reduction on graphs
is essentially the same as the one on terms.

For this reason, many authors have considered various graphical structures to optimize
reduction based on sharing [Wad71, Lam90]. Note, however, that the graphical representation
we present here is neither an optimization of the calculus design nor a proposal for a better
graphical syntax than existing ones, but simply a quotient of positive λ-terms by a naive
equivalence called structural equivalence. Such a graphical representation also has a close
relationship with the reduction of positive λ-terms that we will describe in Chapter 5.

4.2 Equivalence on terms with sharing
As mentioned earlier, the sharing points (name constructs in our case) of a term are often
represented as internal nodes in its corresponding graph. As a result, such a graphical repre-
sentation should naturally capture certain equivalence on terms. Starting from this chapter,
we will represent namings in a more compact way, in the style of explicit substitution (or
simply ES): name x = yz in t is shortened as t[x�yz].

We first define a few notions of contexts, namely strong contexts, weak contexts (also
called open contexts), and substitution contexts. Strong contexts are the most general ones,
where the placeholder ⟨·⟩ can appear anywhere within a term, while weak contexts do not
allow ⟨·⟩ to appear under abstractions. A substitution context is simply defined as ⟨·⟩ followed
by a list of explicit substitutions. For positive λ-terms, substitution contexts coincide with
weak contexts, which is in general not the case for most calculi with explicit substitutions.

Strong contexts C F ⟨·⟩ | C[x�yz] | C[x�λy.t] | t[x�λy.C]
Weak/substitution contexts E F ⟨·⟩ | E[x�yz] | E[x�λy.t]

The plugging C⟨t⟩ of a positive λ-term t into a context C is defined in the usual way. Here,
we allow the context C to capture variables appearing free in t. We will use the notation C⟨⟨t⟩⟩
to stress that C does not capture any free variable of t.

56

A congruence is an equivalence relation R on positive λ-terms closed by strong contexts:
tRu⇒ C⟨t⟩RC⟨u⟩.

We now define an equivalence relation, called structural equivalence, on positive λ-terms.

Definition 12 (Structural equivalence). The structural equivalence ≡str on positive λ-terms

is defined as the smallest congruence containing the following equation.

t[x1�p1][x2�p2] =str t[x2�p2][x1�p1] (x1 < f v(p2) and x2 < f v(p1))

where f v(yz) = {y,z} and f v(λx.u) = f v(u) \ {x}

For example, we have x[x�λy.x1[x1�zz][x2�yy]] ≡str x[x�λy.x1[x2�yy][x1�zz]]. In-
tuitively, the structural equivalence is obtained from the fact that consecutive let expressions
can be permuted if the expressions introduced by them do not depend on each other.

As one would expect, structurally equivalent terms have the same unfolding.

Proposition 18. If t ≡str u, then t = u.

Remark 7. Since the structural equivalence is defined by permutations of namings and each

naming corresponds to a synthetic inference rule, such an equivalence can also be described as

permutations of synthetic inference rules, or phases in focused proofs. However, the equivalence

we describe here does not include all the possible permutations of phases in focused proofs. As we

shall discuss in Section 4.5, by considering all the possible permutations of phases in focused proofs,

some authors have explored the notion ofmulti-focusing, which is however not our purpose here.

4.3 λ-graphs with bodies
In this section, we define a graphical representation of positive λ-terms, called λ-graphs with
bodies, that captures exactly the structural equivalence: two terms are structurally equivalent
if and only if they are represented by the same graph.

We first give some preliminary definitions of (directed) graphs.

Definition 13 (Directed graph). A directed graph G is given by a set N of nodes and a set
E ⊆ N ×N of edges, denoted by (N ,E). Given a directed graph G, if not mentioned otherwise,

we often write NG (resp. EG) for its set of nodes (resp. edges). An edge (n,m) ∈ EG is called an

outcoming edge of n and an incoming edge of m, and we say that n (resp. m) is a direct
predecessor (resp. direct successor) of m (resp. n). An internal node is a node with at least

an incoming edge. A path from n to m (in G) is a sequence n = n0,n1, . . . ,nk =m of nodes with

k ≥ 0 and (ni ,ni+1) ∈ EG for 0 ≤ i ≤ k − 1, and it is called a cycle if n =m. A directed acyclic
graph (or DAG) is a directed graph without cycles.

We also need a notion of subgraphs of a given graph, induced by a subset of nodes.

Definition 14 (Induced subgraph). Let G = (NG,EG) be a directed graph. For N ⊆ NG, the
subgraph of G induced byN , denoted by G[N], is defined as the graph (N ,EG ∩N ×N).

To define our graphical representation of positive λ-terms, we start by defining pre-graphs,
which are essentially DAGs with three types of nodes: application, abstraction, and variable.

57

Definition 15 (Pre-graph). A pre-graph is a (labeled) directed acyclic graph built with the

following three types of nodes:

@

Application

λ

Abstraction Variable

• Application: an application node is labeled with @ and has two incoming edges (left and

right). An application node is also called an @-node.

• Abstraction: an abstraction node is labeled with λ and has one incoming edge. Its only

direct predecessor is called the output of the abstraction node. An abstraction node is also

called a λ-node.

• Variable: a variable node has no incoming edge.

A direct predecessor of a node is also called a child of the node.

Internal nodes, that is, application and abstraction nodes, of a pre-graph are used to represent
intermediate expressions defined using explicit substitutions [x�p] within a term. Intuitively,
we orient edges in such a way that there is an edge (n,m) if the definition ofm requires (directly)
the definition of n. In other words, nodes are defined in a bottom-up fashion.

We now define λ-graphs with bodies by adding some additional structure to pre-graphs.

Definition 16 (Unlabeled λ-graph with bodies). An unlabeled λ-graph with bodies is a
pre-graph G together with two functions bv : ΛG → VG and body : ΛG → 2NG\VG where ΛG is
the set of abstraction nodes of G, and VG is the set of variable nodes of G such that:

1. Bound variables: bv is injective.

2. Disjoint bodies: body(l)∩ body(l′) = ∅ for l , l′ .

3. Dependency: the graph (NG,EG ∪ {(n, l) | n ∈ body(l)}) is a DAG. In particular, the graph

BG = (ΛG, {(l, l′) | l, l′ ∈ΛG, l ∈ body(l′)}), called the scope graph of G, is a DAG.

4. Scope of bound names: if a node n is bv(l) or is in body(l) and there is an edge (n,m) ∈ EG ,
then we have

• m = l, or

• m ∈ body(l′) such that there is a path from l′ to l in BG . Note that this path is unique.

We call bv(l) the bound variable node and body(l) the body of the abstraction node l. A node

that does not belong to any body is called body-free and we denote by body(G) the set of body-free
non-variable nodes in G. A free variable node is a variable node that is not a bound variable
node and a global node is a body-free node that is not a bound variable node.

Note that bv and body are often left implicit and we simply say that G is an unlabeled λ-graph
with bodies.

58

a

@

@ @

@

λ

@

@

λ

Output

a

@

@n @

@m

λ

@

@

λ

Output

Figure 4.1: A valid λ-graph with bodies (left) and an invalid λ-graph with bodies (right).

We can now define λ-graphs with bodies by giving a unique label to each free variable node
and by distinguishing a node from all the global nodes. The intuition behind these definitions
will come shortly.

Definition 17 (λ-graph with bodies). A well-labeled λ-graph with bodies, or simply a λ-
graph with bodies, is an unlabeled λ-graph with bodies with a unique label assigned to each

free variable node, and with a global node chosen, called the output of the λ-graph with bodies.

Given a signature (that is, a set of variables) X , an X -λ-graph with bodies is a λ-graph with

bodies with a free variable node labeled by each element of X .

In order to visualize the maps bv(·) and body(·), we color the labels of abstraction nodes
to distinguish them and color the frame of the nodes in their bodies with the same color. We
proceed similarly for bound variables. In particular, a global node has its frame colored in black.
In Figure 4.1, the left graph is a λ-graph with bodies while the right graph breaks Condition 4
of Definition 16. In the right graph, n belongs to the red body, m belongs to the blue body and
there is an edge (n,m). m is not the red λ-node and there is no path from the blue λ-node to
the red λ-node in the scope graph, as the scope graph simply contains the two λ-nodes and an
edge from the red one to the blue one.

Remark 8. In [CAC19], a graphical representation of λ-terms with sharing, called λ-graphs, is
used to study the sharing equality. In λ-graphs, there is no additional structure such as bodies that

we introduce here. This is because, in their setting, there is no vacuous (as mentioned in [MW23])

or unused name within a λ-abstraction. A typical example of such a vacuous name is the name z
in the following term

x[x�λy.y[z�yy]]

since the output (that is, y) does not depend on z.

Let us give the intuition behind Definition 16. Intuitively, an internal/non-variable node
(which corresponds to an ES [x�p]) is in the body of an abstraction node (which corresponds

59

to an ES of abstraction) if the ES is introduced (exactly) in the abstraction: the abstraction is of
the form λy. · · · [x�p] · · · 1.

Condition 2 is straightforward: every ES is introduced (exactly) in at most one abstraction.
Condition 3 is crucial: it essentially checks how internal nodes in the body of an abstraction

(as well as the body-free internal nodes) depend on each other and makes sure that there
is no cycle in their dependencies. A condition that plays a similar role does not appear in
[CAC19], as the dependency between different nodes is implicitly given by the underlying
DAG. This is not the case in our setting. For example, consider the positive λ-term t =
x[x�λy.y[z�ww]][w�λx′.x′]. Its corresponding λ-graph with bodies is

@

λ

λ

Output

Here, the first ES depends on the second one, which is translated into the dependency of the
red abstraction node on the blue one. However, the underlying DAG is not connected: such a
dependency is considered via edge(s) between the blue abstraction node and the application
node, and the body relation between the application node and the red abstraction node.

Condition 4 checks that the bound variable of an abstraction (resp. every bound name
introduced via explicit substitutions in an abstraction) is used in the right scope. This condition
essentially plays the role of the domination condition in the definition of λ-graphs in [CAC19].

As mentioned earlier, a positive λ-term is simply a leading variable followed by a list of
ESs, and the output in Definition 17 plays exactly the role of the leading variable here.

Remark 9. In [Wu23], Condition 3 in Definition 16 only requires the scope graph BG of G to be a

DAG. However, it is not enough, as illustrated by the following counter-example G:

@

λ Output

λ

It is clear that the scope graph is a DAG (with only two nodes and one edge). As we shall see later,

this graph should essentially correspond to a term of the following form:

x[x�λb0.b0[b1�λr0.r0[r1�xx]]]

1For readers familiar with proof nets, a body is analogous to the content of a box that does not belong to any
inner boxes. It is indeed possible to give all our definitions using boxes. However, we choose to do it with bodies
because it facilitates our work in establishing a translation from graphs to terms.

60

(with x for the output node, b0 (resp. r0) for the blue-framed (resp. red-framed) bound variable

node, b1 for the blue-framed abstraction node, and r1 for the ref-framed application node), which

is obviously not a valid positive λ-term.

Wenow give a notion of dependency between nodes of the same body and between body-
free non-variable nodes. Such a notion is useful in establishing the relation between graphs
and terms. More precisely, it will be used in our "sequentialization" proof (Proposition 21).

Definition 18 (Dependency). We define the dependency relation ≺l of an abstraction node l
on the set body(l) as follows:

1. n ≺l m if (n,m) ∈ EG.

2. n ≺l m if (n,m′) ∈ EG for some m′ ∈ body(l′) with l′ , l, and there is a path from l′ to m
in the scope graph BG (see Definition 16).

Similarly, we define the dependency relation ≺G of G on the set body(G) of body-free non-variable
nodes of G as follows:

1. n ≺G m if (n,m) ∈ EG.

2. n ≺G m if (n,m′) ∈ EG for some m′ ∈ body(l), and there is a path from l to m in BG.

We also define the dependency graphDG of G as the graph (body(G), {(n,m) | n ≺G m}), and
for all abstraction node l, the dependency graph Dl of l as the graph (body(l), {(n,m) | n ≺l m}).

The goal of these definitions is to mimic the dependency between two ESs within the same
abstraction (or at the top level). For Case (1) of Definition 18, there are two possibilities:

• m is an application node. This essentially corresponds to the dependency between two
ESs of the following form:

[x� · · ·]︸ ︷︷ ︸
n

· · · [y�xz]︸ ︷︷ ︸
m

• m is an abstraction node. This means that the node n is the output (see Definition 15) of
m. This corresponds to the dependency between two ESs of the following form:

[x� · · ·]︸ ︷︷ ︸
n

· · · [y�λz.x · · ·]︸ ︷︷ ︸
m

Case (2) corresponds to the dependency between two ESs of the following form:

[x� · · ·]︸ ︷︷ ︸
n

· · · [y�λz.w · · ·

m′︷ ︸︸ ︷
[x′�xy′] · · ·]︸ ︷︷ ︸
m

Note that it is possible that the ES corresponding to m′ is introduced under some other ab-
stractions in the ES corresponding to m. This is why we have the path condition in Case
(2).

61

Proposition 19 (Dependency graphs are DAGs). Let G be a λ-graph with bodies. Then:

1. DG is a DAG, and

2. Dl is a DAG, for any abstraction node l of G.

Proof. These are straightforward consequences of Condition 3 in Definition 16.

In particular, there is no internal node dependent on itself.

Corollary 2 (Self-dependency). Let G be a λ-graph with bodies. Then:

1. for any n ∈ body(G), n⊀G n, And

2. for any l ∈ΛG and n ∈ body(l), n⊀l n.

Definition 19 (Downward closed subset). Let G be an unlabeled λ-graph with bodies. A subset

N ⊆NG of nodes is called downward closed if for all n ∈ N andm ∈ NG such that (m,n) ∈ EG ,
m ∈ body(n) or m = bv(n), we have m ∈ N .

The following proposition states that any subgraph of an unlabeled λ-graph with bodies
induced by a downward closed subset of nodes is also an unlabeled λ-graph with bodies.

Proposition 20 (Induced unlabeled λ-graph with bodies). Let (G,bv,body) be an unlabeled λ-
graph with bodies andN ⊆NG be a downward closed subset of nodes. Then the induced subgraph

H = G[N] by N , together with the restrictions bv′ and body′ , of bv and body respectively, to

the set ΛH =ΛG ∩N , is an unlabeled λ-graph with bodies.

Proof. We first check that the induced subgraphH = G[N] is indeed a pre-graph. It suffices
to check that for any node n ∈ N , all its children in G are in N , and this is straightforward
sinceN is downward closed. Now we check that the two functions bv′ , body′ are well defined.
For this, we need to verify that for all l ∈ ΛH = ΛG ∩NH, bv′(l) = bv(l) ∈ VH = VG ∩NH
and body′(l) = body(l) ⊆ NH \ VH = (NG \ VG)∩NH. This is, again, straightforward since
NH =N is downward closed. It remains to check the three conditions in Definition 16:

1. Disjoint bodies: Trivial.

2. Dependency: It suffices to note that the graph (NH,EH∪{(n, l) | n, l ∈ NH,n ∈ body′(l)})
is the subgraph of the graph (NG,EG ∪ {(n, l) | n ∈ body(l)}) induced byNH sinceNH is
downward closed.

3. Scope of bound names: Let l ∈ΛH, n = bv′(l) or n ∈ body′(l), and (n,m) ∈ EH. Since
(G,bv,body) is an unlabeled λ-graph with bodies, we have, by definition, one of the
following:

• m = l.
• m ∈ body(l′) such that there is a path l′⇝ l in BG. Since l ∈ΛH ⊆NH and since
NH is downward closed, we have l′ ∈ NH. Moreover, we have BH = BG[NH].
Therefore, there is a path l′⇝ l in BH.

As a result, (H,bv′,body′) is an unlabeled λ-graph with bodies.

62

a

@
1

@
2@

3
λ

2

@
1

@
3

λ

Output

1

Ĝ

b

@
2

@
1@

3
λ

1

@
2

@
3

λ

Output

1

Ĥ

Figure 4.2: Two ordered λ-graphs with bodies.

4.4 Relating graphs and terms
In this section, we show that there is a one-to-one correspondence between X -λ-graphs with
bodies and X -terms up to ≡str, where a positive λ-term t is an X -term if and only if f v(t) ⊆ X .
In order to establish such a correspondence, we first establish a one-to-one correspondence
between ordered X -λ-graphs with bodies and X -terms where ordered X -λ-graphs with bodies
are refinements of X -λ-graphs with bodies with some additional structure.

The difference between graphs and terms is essentially the implicit left-to-right linear
ordering in terms. On positive λ-terms, such an ordering should be compatible with the depen-
dency between ESs. The idea is to add some ordering structure to λ-graphs with bodies that is
compatible with the dependency relations (Dl and DG), i.e., topological sorts of dependency
graphs.

Definition 20 (Topological sort). A topological sort of a DAG G is a sequence T containing each

of its vertices such that for every edge (n,m), n appears before m in the sequence. The minimal
node (w.r.t T) is the first node in T.

Definition 21 (Ordered λ-graph with bodies). An ordered λ-graph with bodies Ĝ is a λ-graph
with bodies G together with a topological sort TG of the dependency graphDG of G and a topological
sort Tl of the dependency graph Dl of each abstraction node l.

Figure 4.2 shows two ordered λ-graphs with bodies that share the same underlying λ-graphs
with bodies. As an example, the term corresponding to the left graph in Figure 4.2 is

x[x�λb0.b3[b3�b2b1][b2�λr0.r3[r3�r1r2][r2�ab0][r1�r0r0]][b1�ab0]].

and the term corresponding to the right graph is

x[x�λb0.b3[b3�b1b2][b2�ab0][b1�λr0.r3[r3�r2r1][r2�r0r0][r1�ab0]]]

with bi (resp. rj) for blue-framed (resp. red-framed) non-variable nodes,

63

Before giving a one-to-one correspondence between ordered λ-graphs with bodies and
positive λ-terms, we give the notion of box2 that is useful in the following.

Definition 22 (Box). Let G be a λ-graph with bodies and l an abstraction node. We define the

box of l as the union of bodies together with their bound variable nodes below l:

box(l) =
⋃

l′⇝l in BG

(body(l′)∪ {bv(l′)})

where l′⇝ l in BG means that there is a path from l′ to l in BG.

In Figure 4.1 (left), the box of the red λ-node contains all the red-framed nodes while the
box of the blue λ-node contains all the blue-framed and red-framed nodes.

Intuitively, for a λ-node l of an X -λ-graph with bodies G, the graph obtained from the
subgraph of G induced by box(l) and free variable nodes (labeled by X) corresponds to the
abstraction it introduces.

Now we are ready to present a one-to-one correspondence between X -terms and ordered
X -λ-graphs with bodies. For this, we show that ordered λ-graphs with bodies can actually be
defined inductively just as terms. We first give the following useful definitions.

Definition 23 (Initial graph). Let X be a signature and x ∈ X . We define (x)X as the ordered

X -λ-graph with bodies that contains a free variable node labeled by each element of X and has

the one labeled by x as the output.

x1 · · · x

Output

· · · xn

X

Definition 24 (ES on graphs). Let X and X ′ be signatures, x,y,x1,x2 be names such that

{x1,x2} ⊆ X , x < X and y < X ′ , Ĝ an ordered (X ,x)-λ-graph with bodies and Ĝ′ an ordered

(X ′, y)-λ-graph with bodies. Then

1. Ĝ{nd x← x1@x2} is defined as the graph Ĥ obtained from Ĝ by replacing the free variable

node labeled by x with an @-node whose left (resp. right) child is the variable node labeled

by x1 (resp. x2). We then extend the topological sort TG by having this application node as

the minimal node. It is clear that Ĥ is also an ordered X -λ-graph with bodies.

x

x1 x2

G

· · ·

Output

... → ...

· · ·

Output

H

@

x1 x2

2Similar to the notion of box in proof nets.

64

Remember that a node is black-framed if and only if it is global (see Definition 16).

2. Ĝ{nd x← λy.Ĝ′} is defined as the graph Ĥ obtained from by merging G and G′ and by

replacing the free variable node labeled by x with a body-free new abstraction node l defined
as follows:

(a) its only child is the output of G′ ,

(b) its bound variable is the free variable node labeled by y in G′ (we erase the label y),

(c) its body contains all the body-free non-variable nodes of G′ (such as the @-node in the

figure below), and

(d) its topological sort Tl is that of Ĝ′ .

x

G

...

G′

...

· · ·

Output

· · ·

Output

y

@

→ λ
l

...

H

... @

· · ·

Output

· · ·

Note that G and G′ can share some free variable nodes (exactly the overlapping part of G
and G′ in the above figure): they are merged so that there is only one free variable node

labeled by each element of X ∩X ′ . Also note that the output node of G′ is in the body of l
inH if it is a non-variable node, and is body-free inH otherwise.

It is not difficult to see thatH is an ordered (X ∪X ′)-λ-graph with bodies. The only non-

trivial point to check is Condition 3 in Definition 16, and it is satisfied since there is no edge

from the subgraph (ofH) obtained from G to the subgraph obtained from G′ in the graph

(NH,EH ∪ {(n, l′) | n ∈ body(l′)}). In the end, l being body-free, we extend the topological
sort TG by having this new abstraction node as the minimal node, and Ĥ is an ordered

(X ∪X ′)-λ-graph with bodies.

Note that we can also use these definitions for λ-graphs with bodies by forgetting topological sorts.

Let us give an example of Point (2) of Definition 24 by using the two ordered λ-graphs with
bodies given in Figure 4.2. With Ĝ being an ordered {a}-λ-graph with bodies and Ĥ being an
ordered {b}-λ-graph with bodies, Ĝ{nd a← λb.Ĥ} is the following ordered ∅-λ-graph with
bodies:

65

λ
1

@
1

@
2@

3
λ

2

@
1

@
3

λ

Output

2

@
2

@
1@

3
λ

1

@
2

@
3

λ1

Proposition 21. Let X be a signature. Then Ĝ is an ordered X -λ-graph with bodies if and only

if X ⊢ Ĝ where X ⊢ Ĝ is defined by the following rules.

x ∈ X var
X ⊢ (x)X

X ,x ⊢ Ĝ{y,z} ⊆ X @
X ⊢ Ĝ{nd x← y@z}

X , y ⊢ Ĝ′ X ,x ⊢ Ĝ
λ

X ⊢ Ĝ{nd x← λy.Ĝ′}

Proof. (⇒) Immediate from Definition 23 and Definition 24.
(⇐) Let Ĝ = (G,TG, {Tl | l ∈ ΛG}) be an ordered X -λ-graph with bodies. We proceed by

induction on the number of non-variable nodes in G.

• G contains only variable nodes and its output is labeled by x. Then Ĝ = (x)X .

• G contains a non-variable node n0. We now show that G contains at least one body-free
non-variable node. Suppose that there is no body-free non-variable node in G, which
implies that n0 ∈ body(n1) for some abstraction node n1. Once again, n1 is a non-variable
node. We can therefore construct an infinite sequence n0,n1, · · · of non-variable nodes
such that ni ∈ body(ni+1) for all i. Since G is finite, this implies the existence of a cycle
in the graph (NG, {(n,m) | n ∈ body(m)}), which leads to a contradiction because of
Condition 3 of Definition 16. Therefore, G contains at least one body-free non-variable
node. Among all such nodes, we consider the minimal one n w.r.t. TG and distinguish
two cases based on n:

– Application. Then its children are both free variable nodes (otherwise, nwould not
have been theminimal body-free non-variable node), labeled by y and z, respectively.
Let Ĝ′ be the graph obtained from Ĝ by replacing this application node with a fresh
free variable node labeled by x < X (thus its two incomings edges are removed),
with bodies, dependency graphs, and topological sorts inherited. It is not difficult
to see that the graph Ĝ′ is an ordered (X ,x)-λ-graph with bodies. We have then
Ĝ = Ĝ′{nd x← y@z}.

– Abstraction. consider the subgraph H of G induced by box(n)∪X . By giving
the bound variable node of n in G a label y, we obtain an ordered (X , y)-λ-graph
with bodies Ĥ′ (with bodies, bound variables, dependency graphs, topological sorts
inherited, and with the child of n as the output). To show that H′ is indeed a
λ-graph with bodies, it suffices to show that box(n)∪X is downward closed thanks
to Proposition 20. For this, we only have to show that "for every node m in box(n),

66

every child of m in G is either a free variable node or is also in box(n)" as the
conditions involving bv and body in Definition 19 are clearly satisfied. Let m be
a node in box(n) and m′ be a child of m that is not in box(n). We distinguish two
cases:

∗ m′ is body-free and is not a bound variable node. If m′ is a free variable node,
then we have m′ ∈ X ⊆ box(n)∪X . Otherwise, m′ is a body-free non-variable
node. Since m ∈ box(n) ∪ X and since m is not a variable node (it has a
child), there exists l such that m ∈ body(l) and there is a path l⇝ n in BG by
Definition 22. Moreover, since (m′,m) ∈ EG, we have m′ ≺G n by Definition 18.
By Corollary 2, m′ , n, and m′ must come before n in TG, a contradiction.

∗ m′ belongs to body(l) or is bv(l) for some abstraction node l. By Definition 22,
m is in body(n′) (m cannot be a variable node as it has a child) for some n′ such
that there is a path n′ ⇝ n in BG. Then by Condition 4 of Definition 16, we
have a path n′⇝ l in BG. Since n is body-free and by the uniqueness of paths
between two nodes in BG (by Conditions 2 and 3 of Definition 16), we have a
path from l to n in BG, which implies that m′ is in box(n) by Definition 22, a
contradiction.

Now by removing all the nodes in box(n) from G and by replacing n with a fresh
free variable node x, we get an ordered (X ,x)-λ-graph with bodies Ĝ′ . Similarly, to
show that G′ is indeed a λ-graph with bodies, it suffices to check that the children
of all its nodes except n in G are still in G′ , i.e., not in box(n). Suppose that there is
a node m different from n in G′ having a child m′ (in G) in box(n). Assume that m′
is bv(n′) or in body(n′). Then by Condition 4 of Definition 16, we have one of the
following:
1. m = n′ . This implies that m′ is bv(m) or in body(m) and since m′ is in box(n),

we have a path m⇝ n in BG. The path is non-empty (m is different from n),
so m is also in box(n), a contradiction.

2. m ∈ body(l) such that there is a path l⇝ n′ in BG. since m′ is in box(n), we
have a path n′⇝ n in BG by Definition 22. Thus we have a path l⇝ n in BG,
which is impossible since m is in body(l) and m is not in box(n).

With Ĥ′ being an ordered (X , y)-λ-graph with bodies and Ĝ′ being an ordered
(X ,x)-λ-graph with bodies, we have Ĝ = Ĝ′{nd x← λy.Ĥ′}.

Note that the rules defining positive λ-terms have exactly the same structure as those in
Proposition 21.

Theorem 9. Let X be a signature. Then there is a one-to-one correspondence between ordered

X -λ-graphs with bodies and X -terms.

Proof. We can define translations [[·]]X from X -terms to ordered X -λ-graphs with bodies and
[·]X from ordered X -λ-graphs with bodies to X -terms by induction on the rules in Figure 3.2
and those in Proposition 21. For the base cases, let [[x]]X = (x)X and [(x)X]X = x. We then have
[[[t]]X]X = t and [[[Ĝ]X]]X = Ĝ for all X -term t and ordered X -λ-graph with bodies Ĝ.

67

We have established an isomorphism between X -terms and ordered X -λ-graphs with
bodies. In Section 4.2, positive λ-terms are considered equivalent up to ≡str. How about
ordered λ-graphs with bodies? It is natural to consider that ordered λ-graphs with bodies are
equivalent if they share the same underlying λ-graph with bodies. The following proposition
shows that topological sorts of a DAG can be connected to each other via swaps, similar to
permutations of named structures for terms.

Proposition 22. Let G be a DAG and S a topological sort of G. We call swapping two non-adjacent

nodes of G in a sequence of nodes a valid swap. Then a sequence of nodes can be obtained from S
by a sequence of valid swaps if, and only if, it is a topological sort of G.

Proof. We only prove the converse implication here since the direct implication is trivial.
Assume that S = S1, . . . ,Sk . Let T = T1, . . . ,Tk be a topological sort of G. Suppose that i is the
minimal integer such that Si , Ti . We have thus S1 = T1, . . . ,Si−1 = Ti−1. Now we construct a
sequence S ′ from applying a sequence of valid swaps to S such that

S ′1 = T1, . . . ,S
′
i = Ti . (4.1)

Let j be the unique integer such that Sj = Ti . It is clear that j > i. We now swap Sj with Sj−1.
This is a valid swap since S is a topological sort and the sequence obtained is still a topological
sort. By repeating this step, we can obtain a topological sort S ′ by moving Sj to the i-th position
and S ′ satisfies clearly (4.1).

Now repeat the step by considering S ′ instead of S , and so on. We can eventually reach T
by a sequence of valid swaps.

In order to relate X -terms to X -λ-graphs with bodies, we now show that notions that we
have defined on λ-graphs with bodies can also be defined on terms.

Definition 25. Let t be a X -term. Let x be a name introducing an abstraction in t, i.e., we have
the pattern [x�λy.s] in t. We define the body of x, written body(x), as the set {x1, · · · ,xk} of
names where s is of the form xk+1[xk�pk] · · · [x1�p1]. We say that y is the bound variable of x,
denoted by bv(x). It is clear that any name introduced by the construct [x�p] belongs to at most

one body. We denote by body(t) the set of names introduced by some construct [x�p] that do not
belong to any body of any name introducing an abstraction.

Definition 26 (Dependency between ESs). Let t be an X -term. Let x be a name introduced by

some [x�p] in t. We define the dependency set of x, written dep(x), as the set f v(p). We then

define the dependency graphs of t and its names introducing abstractions:

• The dependency graph Dt of t is defined as the graph

(body(t), {(x,y) | x,y ∈ body(t) and x ∈ dep(y)}).

• The dependency graph Dx of a name x introducing an abstraction is defined as the graph

(body(x), {(y,z) | y,z ∈ body(x) and y ∈ dep(z)}).

Note that if x ∈ dep(y), then x cannot be defined later than y in the same body. This
observation leads to the following proposition.

68

Proposition 23. Let t be an X -term. Then we have:

• Dt is a DAG.

• Dx is a DAG for any x introducing an abstraction.

The permutations defining the structural equivalence are applied to two consecutive named
structures in the same body and we can permute them if and only if neither of them is in the
dependency set of the other. Thus, we have the following proposition.

Proposition 24. Two consecutive named structures can be permuted using =str if and only if

they are not adjacent in their corresponding dependency graph.

The following key lemma can be proved by a straightforward induction on terms.

Lemma 1. For any X -term t, t and [[t]]X have the same dependency graphs.

Now we can state our main theorem, which is simply a consequence of Theorem 9, Propo-
sition 22, Proposition 24, and Lemma 1.

Theorem10. LetX be a signature. Then there is a one-to-one correspondence betweenX -λ-graphs
with bodies and X -terms up to ≡str.

4.5 Concluding remarks and related works
We have studied a graphical representation for positive λ-terms that captures the equivalence
based on permutations of independent ESs. What does such an equivalence mean for proofs?
As mentioned earlier, positive λ-terms correspond to proofs built using synthetic inference
rules. Considering the structural equivalence on positive λ-terms actually comes down to
considering some permutations of synthetic inference rules in a proof. If one uses rather the
terminology in focusing, it is interpreted as permutations of consecutive phases.

Multi-focusing. In the literature on focusing, some authors explored the notion of multi-
focusing [CMS08, CHM16], which consists of merging several focused phases into one, al-
lowing more than one formula to be put under focus. This feature provides the possibility to
describe parallel actions or constructions within a proof. Given a (multi-)focused proof, there
can be multiple ways to merge phases but there is usually a uniquemaximal one, the proof
in which the most parallelism is present. Maximal multi-focused proofs induce naturally an
equivalence on multi-focused proofs: two multi-focused proofs are equivalent if and only if
they correspond to the same maximal multi-focused proofs.

Such an equivalence has been explored in various settings, often in relation to some graphical
structure. In [CMS08], a multi-focused proof system for MALL is shown to be isomorphic to
MALL proof nets, while in [CHM16], a correspondence is established between a multi-focused
proof system for Gentzen’s LK and Miller’s expansion trees.

In [PNN16], Pimentel et al. propose a multi-focused proof system for LJF. By adapting their
system to our approach, one can consider synthetic inference rules via multi-focusing, and
extensions of LJ by using these rules. Briefly speaking, the equivalence induced by maximal
multi-focusing includes the structural equivalence and the following equation:

t[x�λy.u[z�p]] = t[x�λy.u][z�p]

69

if y < f v(p). If we view this equation as an operation (or a rewrite rule), it is related to the notion
of full lazy sharing, first introduced by Wadsworth in his Ph.D. thesis [Wad71]. Intuitively,
if one naming in an abstraction does not depend on the bound variable, then we can move
it out of the abstraction. The idea is that by moving shared structures out of abstractions as
much as possible, we can avoid unnecessary duplications while doing reduction (a definition of
reduction on positive λ-terms shall be given in the next chapter). The problem in our setting
is that once we do one reduction step after moving all the possible shared structures out of
abstractions, there can be some shared structures that can be further moved out of abstractions.
This means that this operation (close to what is called λ-lifting [Joh85] in the literature) should
be done on the fly, which is the reason why we decided not to include it in the equivalence
considered here.

70

Part III

Terms as programs

71

Chapter 5

Positive λ-calculus λpos

In this chapter, we show how the bridge between purely syntactic objects (terms) and compu-
tational objects (programs) can be built following our proofs-as-terms approach presented in
the previous chapters. In Section 5.1, starting from positive λ-terms, we define the positive
λ-calculus (or simply λpos), a call-by-value λ-calculus with (a restricted form of) explicit sub-
stitutions, and show its compatibility with the β-reduction of the λ-calculus. Despite being
the only reasonable reduction on positive λ-terms, the reduction of λpos is sometimes hard to
work with. For this reason, we propose a variant of λpos, called explicit positive λ-calculus,
in Section 5.2, by extending the syntax of positive λ-terms with an additional form of explicit
substitutions and by splitting the key reduction rule of λpos into two.

5.1 Positive λ-calculus λpos

As mentioned earlier, starting from a positive λ-term, we can obtain its corresponding negative
λ-term via unfolding. Moreover, by considering the β-reduction on negative λ-terms, we obtain
the λ-calculus. What about positive λ-terms? Can we define a reduction on positive λ-terms
that is compatible with the β-reduction in some way? Naturally, we would like to define a
notion of redex for positive λ-terms such that a redex of a positive λ-term t is unfolded into
(possibly many or none) redexes of t.

For example, we have x[x�yz][y�λw.w] = (λw.w)z which is itself a β-redex. Therefore,
we expect a redex to be present in the positive λ-term x[x�yz][y�λw.w]. Intuitively, such a
redex corresponds to the following highlighted part x[x� yz] [y�λw.w] , a named abstraction
together with a named application of its corresponding name.

Such a notion of redex is not difficult to define but requires a notion of redex at a distance:
redexes are no longer defined as local patterns within a term and their definition requires
the use of contexts. Consider for example the term x[x�yz][x1�y1z1] · · · [xk�ykzk][y�λw.w]
where xi , yi , and zi are all distinct from z. This term has the same unfolding as the above term,
so its redex should have a similar form:

x[x� yz][x1�y1z1] · · · [xk�ykzk] [y�λw.w]

Remark 10. In the literature, reduction at a distance is often related to, or sometimes inspired by,

graphical formalisms [AK10, ABKL14]. This is also the case for λpos. As we will see, the reduction

73

'

&

$

%

Terms and contexts
Terms t,u, r F x | t[x�yz] | t[x�λy.u]

Strong contexts C F ⟨·⟩ | C[x�yz] | C[x�λy.t] | t[x�λy.C]
Open contexts E F ⟨·⟩ | E[x�yz] | E[x�λy.t]

Root reduction rules
E⟨t[x�yz]⟩[y�λw.E′⟨w′⟩] 7→eme+ E⟨E′⟨t{x�w′}⟩{w�z}⟩[y�λw.E′⟨w′⟩]

t[x�λy.u] 7→gc+ t if x < f v(t)

Reduction rules
t 7→a u

C⟨t⟩ →a C⟨u⟩
t 7→a u

E⟨t⟩ →oa E⟨u⟩
(a ∈ {eme+,gc+})

Reduction
→pos B→eme+ ∪→gc+
→opos B→oeme+ ∪→ogc+

Figure 5.1: The positive λ-calculus λpos.

of λpos can indeed be factorized by the structural equivalence, and thus be seen as a reduction on

λ-graphs with bodies.

As a result, there can be a (possibly large) number of explicit substitutions between the
named abstraction and the corresponding application, which implies the use of contexts in the
base cases of reduction rules (also called root reduction rules).

The reduction of λpos is defined in two steps. We start by defining the root reduction rules,
which are the base cases of reduction, and then close them by some notion of contexts. λpos
has two root reduction rules, 7→eme+ and 7→gc+ . The 7→eme+ rule is the key rule, corresponding
essentially to the β rule of the λ-calculus. While the definition of this rule is not directly
provided by proof theory (or by cut-elimination), it is inspired by proof-theoretic considerations
and includes a cut-elimination as part of it, illustrated as follows:

A positive λ-term t
(a cut-free proof Π) A proof with cutsΠ′

A cut-free proof Π′′
(a positive λ-term t′)

redex identification
then proof transforma-
tion

cut-elimination

Starting from a positive λ-term t which corresponds to a cut-free proof Π, we identify
a pattern in Π that corresponds to a redex (that is, the L.H.S. of the 7→eme+ rule), and then
transform the cut-free proof into a proof with cuts. Applying cut-elimination to the resulting

74

proof gives another cut-free proof Π′ , which gives the R.H.S. of the 7→eme+ rule. In the
7→eme+ rule, the (explicit substitution of) abstraction [y�λw.E′⟨w′⟩] is sometimes called the
acting abstraction and the (explicit substitution of) application [x�yz] is called the receiving
application.

The 7→gc+ rule is a rule for garbage collection, compatible with the call-by-value regime.
By closing the root reduction rules with strong (resp. open) evaluation contexts, we obtain

the strong (resp. open) reduction→pos (resp.→opos) of λpos.
As an example, we have the following→pos-reduction sequence:

x2[x2�f x1][x1�f x0][f �λx.z[z�yy][y�xx]]
→eme+ x2[x2�f z1][z1�y1y1][y1�x0x0][f �λx.z[z�yy][y�xx]]
→eme+ z2[z2�y2y2][y2�z1z1][z1�y1y1][y1�x0x0][f �λx.z[z�yy][y�xx]]
→gc+ z2[z2�y2y2][y2�z1z1][z1�y1y1][y1�x0x0]

The first →eme+ step reduces the redex f x0 where f is used to introduced an abstraction.
Intuitively, it makes a copy the abstraction body and does some meta-level variable renamings
(the bound varialbe x is replaced by the argument of the application x0 and the variable x1
used to introduce the application f x0 is replaced by z1, which is essentially the "output" of the
abstraction). Similarly for the second→eme+ step.

The reduction→pos is, indeed, compatible with the β-reduction of the λ-calculus (Proposi-
tion 26). To show this, we need the following basic lemmas.

Lemma 2. Let t be a positive λ-term. Then f v(t) ⊆ f v(t).

Proof. Straightforward by induction on t.

Lemma 3. Let t be a positive λ-term and x, y be variables. Then t{x�y} = t{x�y}.

Proof. Straightforward by induction on t.

To facilitate the reasoning, we have to define the unfoldings of substitution contexts which
are meta-level substitutions.

Definition 27 (Unfoldings of substitution contexts). The unfolding E of a substitution context

E is the meta-level substitution defined as follows:

⟨·⟩ = · E[x�yz] = E{x�yz} E[x�λy.t] = E{x�λy.t}

For example, we have ⟨·⟩[x�yy][y�λz.w[w�zz]] = {x�yy}{y�λz.zz}.

Proposition 25. Let t be a positive λ-term and E be a substitution context. Then E⟨t⟩ = t E.

Proof. By induction on E.

• E = ⟨·⟩. We have E⟨t⟩ = t = t ⟨·⟩.

• E = E′[x�yz]. We have E⟨t⟩ = E′⟨t⟩[x�yz] = E′⟨t⟩{x�yz} =
i.h.

(t E′){x�yz}, and
t E = t (E′{x�yz}) = (t E′){x�yz}.

• E = E′[x�λy.u]. Similar to the previous case.

75

Lemma 4. Let x be a variable. Let t and u = E⟨y⟩ be positive λ-terms such that E does not

capture the variables of t. Then t{x�u} = E⟨t{x�y}⟩.

Proof. We have

E⟨t{x�y}⟩ =P rop. 25 t{x�y} E
=L.3 t{x�y} E

and
t{x�u} =P rop. 25 t{x�y E}

= t{x�y} E

Proposition 26. Let t and u be positive λ-terms such that t→pos u. Then t→∗β u.

Proof. By induction on the step t→pos u:

• t = E⟨r[x�yz]⟩[y�λw.E′⟨w′⟩] 7→eme+ E⟨E
′⟨r{x�w′}⟩{w�z}⟩[y�λw.E′⟨w′⟩] = u.

t = E⟨r[x�yz]⟩{y�λw.E′⟨w′⟩}
=P rop. 25 (r[x�yz] E){y�λw.E′⟨w′⟩}
= (r{x�yz} E){y�λw.E′⟨w′⟩}
= (r{x�(λw.E′⟨w′⟩)z} E){y�λw.E′⟨w′⟩}
→∗β (r{x�E′⟨w′⟩{w�z}} E){y�λw.E′⟨w′⟩}
=L.3 (r{x�(E′{w�z})⟨w′{w�z}⟩} E){y�λw.E′⟨w′⟩}
=L.4 ((E′{w�z})⟨r{x�w′{w�z}}⟩ E){y�λw.E′⟨w′⟩}
= (E′⟨r{x�w′}⟩{w�z} E){y�λw.E′⟨w′⟩}
= u

• t = u[x�λy.r] 7→gc+ u with x < f v(u). We have t = u{x�λy.r} = u by Lemma 2.

• t = t′[x�yz] →pos u′[x�yz] = u with t′ →pos u′ . By i.h., t′ →∗β u′ . Then we have
t = t′{x�yz} →∗β u′{x�yz} = u.

• t = t′[x�λy.r]→pos u
′[x�λy.r] = u with t′→pos u

′ . Similar to the previous case.

• t = r[x�λy.t′]→pos r[x�λy.u′] = u. By i.h., t′→∗β u′ . Thenwe have t = r{x�λy.t′} →∗β
r{x�λy.u′} = u.

The following proposition is immediate, showing that a →pos-normal positive λ-term
unfolds into a β-normal λ-term.

Proposition 27. Let t be a positive λ-term. If t is→pos-normal, then t is β-normal.

76

Another key property of→pos is that it is a strong bisimulationw.r.t. ≡str, making it possible
to see→pos as a reduction on λ-graphs with bodies1.

Proposition 28. Let t,u, t′ be positive λ-terms such that t ≡str u and t →pos t
′
. Then there

exists u′ such that u→pos u
′
and t′ ≡str u′ .

Proof. It suffices to deal with the contextual closure of =str, which is straightforward by a case
analysis of the position of =str with respect to the reduction step.

A similar result also holds for→opos if one considers the closure of =str by open contexts.

5.2 Explicit positive λ-calculus λoxpos

Despite being inspired by proof-theoretic considerations, λpos can sometimes be difficult to
work with since its key rule (7→eme+) involves too many symbols and is not terminating. For
example, in [Wu23], we claim the confluence of→pos without giving any proof2. Also, as we
will see in Chapter 6, to relate λpos to existing calculi, it is necessary to split 7→eme+ into more
sophisticated sub-rules.

For these reasons, we define a variant of λpos, called explicit positive λ-calculus (λoxpos
for short), by splitting the 7→eme+ rule into two rules, namely the 7→m+

rule and the 7→e+
rule3. For this, we also need to extend the syntax of positive λ-terms to allow ESs of the form
[x�(λy.t)z]. Detailed definitions can be found in Figure 5.2. For our purposes, we will only
focus on the open fragment (that is, with weak reduction on possibly open terms), as the letter
o in its name λoxpos suggests.

Clearly, λoxpos simulates λopos as t→oeme+ u implies t→oe+→om+
u.

Proposition 29. λoxpos simulates λopos.

A nice feature of λoxpos is that it enjoys the diamond property, the proof of which relies on
the following basic lemma.

Lemma5 (Stability under renamings). Let t andu beλoxpos terms. If t→ox+ u then t{x�y} →ox+
u{x�y} for any x and y.

Theorem 11 (Diamond property). The relation→ox+ enjoys the diamond property.

Proof. Suppose that t1 ox+← t→ox+ t2 with t1 , t2. We prove that there exists t3 such that
t1 →ox+ t3 ox+← t2 by induction on the step t →ox+ t1 and by case analysis on the step
t→ox+ u. The base cases:

• t = u[x�(λy.E⟨z⟩)w] 7→m+
E⟨u{x�z}⟩{y�w} = t1. The step t →ox+ t2 takes place

entirely in u since the reduction is weak, and by Lemma 5 we have:
1A straightforward definition on λ-graphs with bodies can be found in [Wu23].
2It is possible to prove it by first proving the confluence of the variant we are about to present. Since we will

mainly consider its open reduction→opos in the following, and since such a proof requires defining a residual
system which can be tedious, we have decided not to discuss it here.

3The names of these rules shall be justified by the rules of similar names in Chapter 6.

77

'

&

$

%

Terms and contexts
Terms t,u, r F x | t[x�yz] | t[x�λy.u] | t[x�(λy.u)z]

Open contexts E F ⟨·⟩ | E[x�yz] | E[x�λy.t] | E[x�(λy.t)z]

Root reduction rules
t[x�(λy.E⟨z⟩)w] 7→m+

E⟨t{x�z}⟩{y�w}
E⟨t[x�yz]⟩[y�λw.u] 7→e+ E⟨t[x�(λw.u)z]⟩[y�λw.u]

t[x�λy.u] 7→gc+ t if x < f v(t)

Reduction rules
t 7→a t

′
a ∈ {m+,e+,gc+}

E⟨t⟩ →oa E⟨t′⟩

Reductions
→ox+ B →om+

∪→oe+ ∪→ogc+
→ox+¬gc B →om+

∪→oe+

Figure 5.2: The open explicit positive λ-calculus λoxpos.

u[x�(λy.E⟨z⟩)w] E⟨u{x�z}⟩{y�w}

u′[x�(λy.E⟨z⟩)w] E⟨u′{x�z}⟩{y�w}

m+

ox+ ox+
m+

• t = E⟨u[x�yz]⟩[y�λw.r] 7→e+ E⟨u[x�(λw.r)z]⟩[y�λw.r] = t1. Cases of t→ox+ t2:

– It is a 7→e+ step involving the same acting abstraction and a different receiving
application. If the receiving application is in E, then E = E1⟨E2[x′�yz′]⟩. The
diagram then closes as follows:

E1⟨E2⟨u[x�yz]⟩[x′�yz′]⟩[y�λw.r] E1⟨E2⟨u[x�(λw.r)z]⟩[x′�yz′]⟩[y�λw.r]

E1⟨E2⟨u[x�yz]⟩[x′�(λw.r)z′]⟩[y�λw.r] E1⟨E2⟨u[x�(λw.r)z]⟩[x′�(λw.r)z′]⟩[y�λw.r]

e+

e+ e+
e+

If the receiving application is in u, then the diagram closes similarly.

– It takes place entirely in E, then we have:

E⟨u[x�yz]⟩[y�λw.r] E⟨u[x�(λw.r)z]⟩[y�λw.r]

E′⟨u[x�yz]⟩[y�λw.r] E′⟨u[x�(λw.r)z]⟩[y�λw.r]

e+

ox+ ox+
e+

– It takes place entirely in u. The diagram is analogous to the previous one.

– It is a→oe+ step where the acting abstraction is in E and the receiving application
is in u. Then E = E′⟨E′′[y′�λw′.r ′]⟩ and u = E′′′⟨u′[x′�y′z′]⟩. The diagram then
closes as follows:

78

E′ ⟨E′′ ⟨E′′′ ⟨u′ [x′�y′z′]⟩[x�yz]⟩[y′�λw′ .r′]⟩[y�λw.r] E′ ⟨E′′ ⟨E′′′ ⟨u′ [x′�y′z′]⟩[x�(λw.r)z]⟩[y′�λw′ .r′]⟩[y�λw.r]

E′ ⟨E′′ ⟨E′′′ ⟨u′ [x′�(λw′ .r′)z′]⟩[x�yz]⟩[y′�λw′ .r′]⟩[y�λw.r] E′ ⟨E′′ ⟨E′′′ ⟨u′ [x′�(λw′ .r′)z′]⟩[x�(λw.r)z]⟩[y′�λw′ .r′]⟩[y�λw.r]

e+

oe+ oe+
e+

– It is a→ogc+ step with the abstraction in E and the ’body’ of the step containing u.
That is, Then E = E′⟨E′′[y′�λw′.r ′]⟩ with y′ < f v(E′′⟨u[x�yz]⟩). Then:

E′⟨E′′⟨u[x�yz]⟩[y′�λw′ .r ′]⟩[y�λw.r] E′⟨E′′⟨u[x�(λw.r)z]⟩[y′�λw′ .r ′]⟩[y�λw.r]

E′⟨E′′⟨u[x�yz]⟩⟩[y�λw.r] E′⟨E′′⟨u[x�(λw.r)z]⟩⟩[y�λw.r]

e+

ogc+ ogc+
e+

• t = u[x�λy.r] 7→gc+ u = t1. Then the step t→ox+ t2 takes place in u and we have:

u[x�λy.r] u

u′[x�λy.r] u′

gc+

ox+ ox+
gc+

For the inductive cases,

• t = u[x�λy.r]→ox+ u1[x�λy.r] = t1 with u→ox+ u1. Cases of t→ox+ t2:

– It takes place entirely in u. Then it follows by the i.h.
– It is a root step involving [x�λy.r]. Then it is an already treated root case.

• t = u[x�(λy.E⟨z⟩)w] →ox+ u1[x�(λy.E⟨z⟩)w] = t1 with u →ox+ u1. Similar to the
previous case.

Postponement of garbage collection and local termination. Garbage collection steps
can actually be ignored as they can be postponed in a reduction sequence such that the number
of→om+

(resp.→oe+) steps remains unchanged.

Proposition 30 (Local postponement of garbage collection). Let t and u be λoxpos terms and

a ∈ {m+,e+}. If t→ogc+→oa u, then t→oa→ogc+ u.

Proof. Assume t = E⟨t1[x�λy.t2]⟩ →ogc+ E⟨t1⟩ = r . Cases of r→oa u:

• It takes place entirely in E, then we have:

E⟨t1[x�λy.t2]⟩ E⟨t1⟩

E′⟨t1[x�λy.t2]⟩ E′⟨t1⟩

ogc+

oa oa
ogc+

• It takes place entirely in t1, then we have:

79

E⟨t1[x�λy.t2]⟩ E⟨t1⟩

E⟨t′1[x�λy.t2]⟩ E⟨t′1⟩

ogc+

oa oa
ogc+

• It is a→oe+ step where the acting abstraction is in E and the receiving application is in
t1. Then E = E1⟨E2[z�λw.t3]⟩ and t1 = E3⟨t′1[x′�zy′]⟩, and we have:

E1⟨E2⟨E3⟨t′1[x′�zy′]⟩[x�λy.t2]⟩[z�λw.t3]⟩ E1⟨E2⟨E3⟨t′1[x′�zy′]⟩⟩[z�λw.t3]⟩

E1⟨E2⟨E3⟨t′1[x′�(λw.t3)y′]⟩[x�λy.t2]⟩[z�λw.t3]⟩ E1⟨E2⟨E3⟨t′1[x′�(λw.t3)y′]⟩⟩[z�λw.t3]⟩

ogc+

oa oa
ogc+

• It is a→om+
step with E = E1⟨E2[z�(λw.E′⟨x′⟩)y′]⟩. Then we have:

E1⟨E2⟨t1[x�λy.t2]⟩[z�(λw.E′⟨x′⟩)y′]⟩ E1⟨E2⟨t1⟩[z�(λw.E′⟨x′⟩)y′]⟩

E1⟨E′⟨E2⟨t1[x�λy.t2]⟩{z�x′}⟩{w�y′}⟩ E1⟨E′⟨E2⟨t1⟩{z�x′}⟩{w�y′}⟩

ogc+

om+ om+
ogc+

Proposition 31 (Postponement of garbage collection). Let t and u be λoxpos terms, d : t→∗ox+ u.
Then there exist reduction sequences e : t→∗ox+¬gc u

′
and f : u′ →∗ogc+ u with |e|om+

= |d|om+
,

|e|oe+ = |d|oe+ , and |f | = |d|ogc+ .

Proof. By a straightforward induction on |d| using Proposition 30.

Proposition 32 (Local termination). Let a ∈ {m+,e+,gc+}. The relation→oa is strongly nor-

malizing. Moreover,→oe+ ∪→ogc+ is strongly normalizing.

Proof. For→om+
and→ogc+ it is trivial, as the number of constructors decreases. For→oe+ , one

needs an appropriate measure. A similar and more general one can be found in [Acc23].

80

Chapter 6

Usefulness: relating λpos and value
substitution calculus

In this chapter, we show how the positive λ-calculus relates to Accattoli and Paolini’s value
substitution calculus (VSC) [AP12], a well-studied call-by-value λ-calculus with explicit sub-
stitutions, via the notion of usefulness. We start by introducing some general aspects of
call-by-value calculi with sharing and then give the first intuition of usefulness in Section 6.1.
In Section 6.2, we present a variant λovsc of the VSC before dissecting it by conducting a deep
analysis of usefulness in Section 6.3. We show in Section 6.4 how the notion of usefulness
induces a factorization theorem in λovsc. Thanks to the factorization, we establish a translation
from λovsc to λoxpos in Section 6.5, showing that the positive λ-calculus captures the essence
of usefulness.

6.1 Sharing and usefulness
In the literature, there are many different presentations of sharing. As we mentioned in
Section 2.4, the simplest way of introducing sharing in theλ-calculus is by adding a let x = u in t
construct (or equivalently, an explicit substitution t[x�u]) to the standard syntax.

In a call-by-value setting, having both explicit substitutions t[x�u] and the most general
form tu of applications can be somewhat redundant, as the use of explicit substitutions allows
one to constrain the shape of applications while maintaining the same expressivity.

As an example, we show how to restrict left immediate sub-terms of applications to be only
values. The idea is to apply (recursively) a term transformation J · K turning a term tu into
(xJuK)[x�JtK]with x fresh if t is itself an application, and into JtKJuK otherwise. It is then clear
that by doing so, every term is transformed into a term with no subterm of the form (tu)r .

It is typical to have restricted forms of applications in call-by-value rather than call-by-name
settings. In fact, in calculi with explicit substitutions, we often have the following substitution
rule (possibly with some restrictions):

t[x�u]→ t{x�u}

where we eliminate an explicit substitution by applying meta-level substitutions. Imagine now
that we only allow left immediate sub-terms of applications to be values, then the following
substitution step:

(xy)[x�zw]→ (zw)y

81

is simply blocked by the syntax, as the term on the R.H.S. is not valid according to the
restriction.

There are many call-by-value calculi with restricted forms of applications, two notable
examples being the calculus of A-normal forms by Sabry and Felleisen [SF92, FSDF93] and
the fine-grained call-by-value calculus by Levy et al. [LPT03]. Applications are also restricted
in Sestoft’s study of call-by-need [Ses97], or that of Walker’s on substructural type systems
[Wal04].

Furthermore, it is possible to restrict the immediate sub-terms of applications to be variables
instead of values, which gives rise to nine different forms of applications: the most general
form tu together with eight restricted (or crumbled, as in [ACGC19]) forms vu, xu, tv′ , vv′ ,
xv′ , ty, vy, and xy.

In addition to shapes of applications, there exist various ways to design or classify call-by-
value calculi with explicit substitutions:

• Nested ESs vs flattened ESs: whether explicit substitutions can be nested (as in
t[x�u[y�r]]) or have to be flattened (as in t[x�u][y�r]).

• Variables as values or not: whether variables are values, and thus can be substituted,
or not, that is, only abstractions can be substituted.

• Small-step substitution v.s. micro-step substitution: whether substitution acts on
all occurrences of a variable at once or on one variable occurrence at a time.

Note that the first two points only involve the syntax while the last one involves the semantics.
These choices do not necessarily affect the expressivity of the calculus. However, some

choices might make the calculus obtained easier (or more difficult) to handle and reason about.
From this point of view, the positive λ-calculus λpos is a calculus with a "minimalistic" form

xy of applications, flattened ESs, micro-step substitution, and where variables are not values. It
stands out from most existing calculi, however, because it also forbids the possibility of having
ESs of variables, a property that we will refer to as the compactness in the following.

Sharing of Variables and Compactness In λ-calculi with sharing, variables can usually
be shared, that is, t[x�y] is a valid term if t is. This makes it possible to have (variable)
renaming chains, that is, lists of ESs in the following form:

t[x1�x2][x2�x3] . . . [xn−1�xn] (6.1)

Such chains can be problematic at times as they often lead to both space and time in-
efficiencies, illustrated in Section 6.2 with a concrete example. To solve this issue, various
optimizations have been adopted to prevent the creation of such chains (See, for example, Sands
et al. [SGM02], Wand [Wan07], Friedman et al. [FGSW07], and Sestoft [Ses97]). In [ASC17],
Accattoli and Sacerdoti Coen show that it is possible to avoid time inefficiencies related to
renaming chains by considering abstractions as the only values. Recently, Accattoli et al. have
shown that the dynamic removal of renaming chains is essential for the only known reasonable
notion of logarithmic space in the λ-calculus [ADLV22].

The compactness of λpos (resp. λoxpos) removes the issue of renaming chains altogether,
with no need to design optimizations to prevent their creations, or remove variables from
values, because renaming chains are simply forbidden by the syntax.

82

Useful Sharing Useful sharing (or useful substitution) is a concept first introduced by
Accattoli and Dal Lago [ADL16] to study reasonable time cost models for λ-calculi. It has also
been adapted to a call-by-value setting by Accattoli et al. [ACSC21]. This is a concept that only
makes sense in micro-step settings, that is, when we have the following substitution rule (or a
similar one):

O⟨x⟩[x�u] → O⟨u⟩[x�u]

where O is a context. The basic idea (in a call-by-value setting) is quite intuitive: one should
replace a variable occurrence with a copy of a shared abstraction (with the above step, where u
is an abstraction) only when it contributes to the creation of β-redexes, i.e., is useful, for
instance, in the following case:

(xt)[x�λy.u] → ((λy.u)t)[x�λy.u] (6.2)

On the other hand, one should avoid duplications that do not contribute to the creation of
β-redexes, i.e. are not useful, as the following one:

(tx)[x�λy.u] → (t(λy.u))[x�λy.u] (6.3)

Avoiding non-useful duplications leads to considerable speed-ups, that can even be exponential
for some terms in the case of strong evaluation, as shown in [ADL16, ACSC21].

While the intuition behind useful sharing is easy to convey, its formal definition is far
from trivial, and various technical issues have to be addressed because there are many other
cases apart from the ones in (6.2) and (6.3). Accattoli et al. [ACSC21] give the first simplified
setting of useful sharing by considering λ-calculi where arguments of applications can only be
variables (that is, with applications of shape ty, vy, or xy), since then non-useful substitutions
such as the one in (6.3) are simply ruled out by the syntax.

One of the subtleties of useful sharing is related to renaming chains (as in (6.1)). Due to
renaming chains, we have to consider not only steps as in (6.2), which are directly useful, as
they immediately create β-redexes, but also steps over a renaming chain such as:

(x1t)[x1�x2] . . . [xn−1�xn][xn�λy.u] → (x1t)[x1�x2] . . . [xn−1�λy.u][xn�λy.u] (6.4)

Such a step should be called indirectly useful. Indeed, it does not directly create a β-redex but
it contributes to the future creation of β-redexes. Following this step, λy.u shall replace the
content of all the explicit substitutions in the chain and finally be substituted for x1, creating
a β-redex. Indirectly useful steps cannot be avoided, otherwise, some β-redexes are never
created, and evaluation gets stuck.

Thanks to compactness, λoxpos has no renaming chains and thus indirectly useful steps are
simply ruled out. Evaluation is not stuck in λoxpos, though, because such indirectly useful steps
somehow appear in the form of directly useful steps in λoxpos, as explained in Sections 6.4-6.5.

6.2 Value substitution calculus (VSC)
In this section, we present the value substitution calculus (VSC for short) introduced by Accattoli
and Paolini. VSC is a λ-calculus with explicit substitutions, that we will relate to the positive
λ-calculus in Section 6.5 via the notion of usefulness. This calculus refines Plotkin’s call-by-
value λ-calculus [Plo75] and has good rewriting properties. Detailed definitions can be found
in Figure 6.1.

83

'

&

$

%

Language
Terms t,u, r,q,p F v | tu | t[x�u]
Values v,v′ F x | λx.t

Answers a,a′ F L⟨λx.t⟩
Substitution contexts L,L′ F ⟨·⟩ | L[x�u]

Open contexts O,O′ F ⟨·⟩ |Ot | tO | t[x�O] |O[x�u]

Root reduction rules
Multiplicative L⟨λx.t⟩u 7→m L⟨t[x�u]⟩
Exponential O⟨⟨x⟩⟩[x�L⟨v⟩] 7→e L⟨O⟨⟨v⟩⟩[x�v]⟩

Garbage collection t[x�L⟨v⟩] 7→gc L⟨t⟩ if x < f v(t)

Reduction rules
t 7→a t

′
a ∈ {m,e,gc}

O⟨t⟩ →oa O⟨t′⟩

Reductions
→ovsc B →om ∪→oe ∪→ogc
→o¬gc B →om ∪→oe

Figure 6.1: The open (micro-step) value substitution calculus λovsc.

For our purpose, we consider its open fragment, that is, the fragment in which terms are
possibly (but not necessarily) open and reduction is forbidden under abstractions, hence the use
of open contexts in defining the reduction. In contrast to the original calculus with small-step
substitutions, we consider amicro-step variant here. This open micro-step variant λovsc of
VSC has three root reduction rules, namely 7→m, 7→e, and 7→gc. These rules are at a distance,
as those of λpos, justified by the use of contexts in their definitions.

The letter m (resp. e) in 7→m (resp. 7→e) refers to multiplicative (resp. exponential)
cut-elimination steps of linear logic as there is a close relation between the VSC and linear
logic proof nets [Acc15]. Intuitively, the multiplicative rule 7→m triggers what we usually
call a β-redex and creates an explicit substitution while the exponential rule 7→e triggers an
explicit substitution and performs a substitution when its argument is an answer, that is, a
value (variable or abstraction) up to a list of ESs. Remember that the notation O⟨⟨t⟩⟩ in the 7→e
rule means that O does not capture any free variable of t. The 7→gc rule is a rule for garbage
collection, eliminating an explicit substitution that is no longer needed.

We have, for example, the following→ovsc-reduction sequence:

(λx.x)((λy.y)z) →om x[x�(λy.y)z]
→om x[x�y[y�z]]
→oe y[x�y][y�z]
→ogc y[y�z]
→oe z[y�z]
→ogc z

Note that the first→oe step can take place because y[y�z] is of the form L⟨v⟩.
In the following, as inλoxpos, the garbage collection rule 7→gcwill be ignored as it can always

be postponed in a→ovsc-reduction sequence, without changing the number of applications of
each of the other two rules. The postponement property can be proved based on the following
local postponement property.

84

Proposition 33 (Local postponement of garbage collection). For a ∈ {m,e}, If t→ogc→oa u,
then t→oa→ogc u.

Proof. Assume t = O⟨t′[x�L⟨v⟩]⟩ →ogc O⟨L⟨t′⟩⟩ = r →oa u. The proof is based on a full
analysis of all the possible cases of the step r→oa u. Details can be found in Appendix A.2.

Proposition 34 (Postponement of garbage collection). If d : t→∗ovsc u, then there exist reduction
sequences e : t →∗o¬gc u′ and f : u′→∗ogc u with |e|om = |d|om, |e|oe = |d|oe, and |f | = |d|ogc.

Proof. Straightforward proof by induction on |d| using Proposition 33.

As one would expect, λovsc is not terminating. However, each of its rules is terminating
when considered separately.

Proposition 35 (Local termination). For a ∈ {m,e,gc}, the rewrite relation→oa is strongly

normalizing. Moreover,→oe ∪→ogc is strongly normalizing.

Proof. For→om and→ogc, it is trivial because the number of constructors decreases. For→oe,
one can adapt the measure used in [Acc23]. Details are omitted here.

Themoreover part follows from the fact that given a (→oe ∪→ogc)-reduction sequence
one can postpone all the→ogc steps while preserving the number of steps of both→oe and
→ogc (Proposition 34), thus reducing the strong normalization of→oe ∪→ogc to that of→oe
and→ogc separately.

Remark 11 (Renaming Chains). In λovsc, as mentioned earlier, there can be renaming chains,

that is, lists of ESs of variables, such as t[x1�x2][x2�x3] . . . [xn−1�xn]. We now illustrate the

issue of inefficiencies with renaming chains using the following reduction of the looping combinator

Ω:

Ω = (λx.xx)(λx.xx)
→om (x1x1)[x1�λx.xx]
→oe ((λx.xx)x1)[x1�λx.xx]
→om (x2x2)[x2�x1][x1�λx.xx]
→oe (x1x2)[x2�x1][x1�λx.xx]
→oe ((λx.xx)x2)[x2�x1][x1�λx.xx]
→om (x3x3)[x3�x2][x2�x1][x1�λx.xx]
→oe (x2x3)[x3�x2][x2�x1][x1�λx.xx]
→oe (x1x3)[x3�x2][x2�x1][x1�λx.xx]
→oe ((λx.xx)x3)[x3�x2][x2�x1][x1�λx.xx]
· · ·

Note that after each→om step, the evaluation does a sequence of→oe steps having length equal to

the number of preceding→om steps. The number of→oe steps is then quadratic in the number

of→om steps, as pointed out by Accattoli and Sacerdoti Coen [ASC17]. They show that to remove

this issue, it suffices to remove variables from values (as it is done in most implementation studies,

but usually without an explanation for this choice) since evaluation then rather proceeds as follows:

85

'

&

$

%

Exp. root rule for abstractions O⟨⟨x⟩⟩[x�L⟨λy.t⟩] 7→eabs L⟨O⟨⟨λy.t⟩⟩[x�λy.t]⟩
Exp. root rule for variables O⟨⟨x⟩⟩[x�L⟨y⟩] 7→evar L⟨O⟨⟨y⟩⟩[x�y]⟩

GC root rule for abstractions t[x�L⟨λy.u⟩] 7→gcabs L⟨t⟩ if x < f v(t)
GC root rule for variables t[x�L⟨y⟩] 7→gcvar L⟨t⟩ if x < f v(t)

Ctx closure
t 7→a t

′
a∈{eabs,evar,gcabs,gcvar}

E⟨t⟩ →oa E⟨t′⟩

Figure 6.2: Dissected rewriting rules of λovsc.

Ω = (λx.xx)(λx.xx)
→om (x1x1)[x1�λx.xx]
→oe ((λx.xx)x1)[x1�λx.xx]
→om (x2x2)[x2�x1][x1�λx.xx]
→oe (x2x2)[x2�λx.xx][x1�λx.xx]
→oe ((λx.xx)x2)[x2�λx.xx][x1�λx.xx]
→om (x3x3)[x3�x2][x2�λx.xx][x1�λx.xx]
→oe (x3x3)[x3�λx.xx][x2�λx.xx][x1�λx.xx]
→oe ((λx.xx)x3)[x3�λx.xx][x2�λx.xx][x1�λx.xx] →om · · ·

And it is easily seen that the number of→oe steps is now linear in the number of→om steps. As

we will see later, λoxpos subsumes this approach, by forbidding altogether ESs of variables, and

thus also removing the ambiguity of whether variables are values or not.

6.3 Dissecting λovsc: variable substitutions, useful (and
non-useful) steps

In this section, we split the reduction of λovsc into various sub-reductions in order to relate
λovsc and λoxpos in the next section. Intuitively, some steps of λovsc cannot be mapped into
steps in λoxpos, while some are absorbed, that is, mapped to identities rather than being
simulated.

This is why we have to partition the rewriting rules of λovsc into sub-rules in order to
capture the steps that cannot be expressed, those that are absorbed, and those that are simulated
by λoxpos. As we shall see later, such a partition captures the essence of useful sharing via the
translation from λovsc to λoxpos.

ESs and substitutions of variables. In λoxpos, it is impossible to represent ESs of variables,
and there is also no way to simulate an exponential step such asO⟨⟨x⟩⟩[x�y]→oe O⟨⟨y⟩⟩[x�y]
or a garbage collection step t[x�y]→oe t with x < f v(t) for variables.

As we shall see later in Section 6.5, ESs of variables will be translated using meta-level
variable renamings and these steps will simply be absorbed by our translation from λovsc to
λoxpos, that is, mapped to identities. For this reason, we now split the root exponential rule 7→e
into two rules 7→eabs and 7→evar , depending on whether the duplicated value is an abstraction
or a variable, and similarly for 7→gc. The rules obtained can be found in Figure 6.2.

86

The two corresponding rules 7→eabs and 7→gcabs for abstractions, on the other hand, are not
absorbed by the translation: 7→gcabs shall be closed by all open context and simply factored
out via the postponement of garbage collection (Propositions 31 and 34). The exponential rule
7→eabs for abstractions is where usefulness plays a role and has to be further classified into
sub-rules, as discussed in the following paragraph.

Useful steps, in λoxpos and λovsc. Exponential steps in λoxpos are always directly useful
as they create β-redexes immediately. This is however not the case in λovsc. First, there exist
steps that are not directly useful such as

x[x�λy.u]→oeabs (λy.u)[x�λy.u] (6.5)

which do not create any β-redex. Such steps can be further classified into two categories,
namely non-useful steps and indirectly useful steps.

The step above is non-useful as it does not contribute to any future creation of β-redexes
(the only rule that can be applied to the term on the R.H.S. is the garbage collection rule).
Another example of a non-useful step is

(tx)[x�λy.u]→oeabs (t(λy.u))[x�λy.u] (6.6)

Some steps, however, contribute to the creation of β-redexes in some way despite not
creating β-redexes immediately. These steps are indirectly useful. For example, the step

(xt)[x�y][y�λz.u]→oeabs (xt)[x�λz.u][y�λz.u] (6.7)

is not directly useful, but it is indirectly useful as a directly useful step

(xt)[x�λz.u][y�λz.u]→oeabs ((λz.u)t)[x�λz.u][y�λz.u]

can now take place thanks to it.
Another subtlety is that non-useful steps are not closed by contexts. Indeed, plugging a

non-useful step into a context might result in a useful step. For example, plugging the step in
(6.5) into the context ⟨·⟩z gives the following step:

x[x�λy.u]z→oeabs (λy.u)[x�λy.u]z

which is directly useful as the R.H.S. can be further reduced by a→om step:

(λy.u)[x�λy.u]z→om u[y�z][x�λy.u]

Due to these subtleties, indirectly useful steps are considered non-useful in the
following, and we simply call directly useful steps useful steps. This is, however, not
cheating, as we will see in Section 6.4, such a choice shall be justified by our core
factorization theorem.

87

Useful Contexts. Intuitively, if replacing a variable occurrence with an abstraction in a term
creates a β-redex (→om-redex), then such a variable occurrence must be applicative, that is,
applied to some other sub-term (up to a substitution context). It is then not difficult to see
that (directly) useful steps can be defined via a notion of contexts, called useful contexts and
denoted by U , by putting together the replaced (applicative) variable and the surrounding
evaluation context. We also define non-useful contexts N , whose three clauses correspond to
the three cases in (6.5), (6.6), and (6.7), respectively.

Definition 28. Useful and non-useful contexts of λovsc are defined as follows:

Useful contexts U F O⟨Lt⟩ Non-useful contexts N F L |O⟨tL⟩ |O⟨t[x�L]⟩

The formal definition of useful and non-useful→oeabs steps then follows.

Definition 29. Any→oeabs step has the following shape:

O1⟨O2⟨⟨x⟩⟩[x�L⟨λy.t⟩]⟩ →oeabs O1⟨L⟨O2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩

with O1 the evaluation context surrounding the root step. Such a→oeabs step is called useful
(resp. non-useful) if O1⟨L⟨O2[x�λy.t]⟩⟩ is a useful (resp. non-useful) context.

Below we give some properties of useful contexts that allow us to understand more about
useful (and non-useful) steps and eventually provide a simplified version of their definitions in
Figure 6.3.

Notation. For simplicity, we often use predicates usef and nusef in the following: usef(O)
means thatO is useful while nusef(O)means thatO is non-useful. Similarly, we use the predicate

sub (resp. nsub) for substitution contexts (resp. non-substitution contexts).

The following lemma states how useful contexts depend on their sub-contexts, with the
first case being the only non-straightforward one.

Lemma 6 (Useful sub-contexts).

1. usef(Ot)⇔ usef(O)∨ sub(O).

2. usef(tO)⇔ usef(O).

3. usef(O[x�t])⇔ usef(O).

4. usef(t[x�O])⇔ usef(O).

As one would expect, useful and non-useful contexts provide a partition of open contexts.

Lemma 7. A VSC open context O is either useful or non-useful.

Proof. By induction onO. The empty context ⟨·⟩ is non-useful and not useful. For the inductive
cases, the only interesting one is the following:

• O =O′t. By i.h., O′ is either useful or non-useful.

88

– O′ is useful and not non-useful, which means that it can be written as O′1⟨Lu⟩.
Then we have O =O1⟨Lu⟩ with O1 =O′1t. Therefore, O is useful. We now show
that it is not non-useful. Obviously, O is not a substitution context. If it is of the
form O2⟨tL⟩ (resp. O2⟨t[x�L]⟩) for some O2, then O2 is of the form O′2t with
O′ =O′2⟨tL⟩ (resp. O′ =O′2⟨t[x�L]⟩), which contradicts the hypothesis that O′ is
not non-useful. As a result, O is not non-useful.

– O′ is non-useful. We distinguish three cases:
∗ O′ = L. Then O is useful and not non-useful.
∗ O′ =O1⟨uL⟩. Then O is non-useful and not useful.
∗ O′ =O1⟨u[x�L]⟩. Then O is non-useful and not useful.

• All the remaining cases can be treated in a similar way.

Corollary 3. A→oeabs step is either useful or non-useful.

As mentioned earlier, the notion of usefulness (resp. non-usefulness) is subtle with respect
to context plugging. The next lemmas give a few properties that are essential in our proofs,
especially when we need to check whether a step is useful or not.

Lemma 8. sub(O1⟨L⟨O2⟩⟩)⇔ sub(O1⟨O2⟩).

Proof. Straightforward by induction on O1.

Lemma 9. sub(O1⟨O2⟩)⇔ sub(O1)∧ sub(O2).

Proof. Straightforward by induction on O1.

Lemma 10 (Context plugging and usefulness).

1. usef(O1⟨L⟨O2⟩⟩)⇔ usef(O1⟨O2⟩).

2. usef(O1⟨O2⟩)⇔ usef(O2)∨ (sub(O2)∧usef(O1)).

3. nusef(O1⟨O2⟩)⇔ nusef(O2)∧ sub(O2)⇒ nusef(O1).

Proof. 1. By induction onO1. The base case is trivial by Lemma 6.3. For the inductive cases:

• O1 =O′1u. By Lemma 6.1, usef(O1⟨L⟨O2⟩⟩)⇔ usef(O′1⟨L⟨O2⟩⟩)∨sub(O′1⟨L⟨O2⟩⟩)
and usef(O1⟨O2⟩)⇔ usef(O′1⟨O2⟩)∨sub(O′1⟨O2⟩). We then conclude by i.h. and
Lemma 8.

• The remaining cases are straightforward by i.h. and Lemma 6.

2. By induction on O1. The base case is trivial. For the inductive cases:

• O1 =O′1t. We have: usef(O′1⟨O2⟩t)
L.6
⇐=⇒ sub(O′1⟨O2⟩)∨usef(O′1⟨O2⟩)

L.9 and i.h.

⇐======⇒

usef(O2)∨(sub(O2)∧usef(O′1))∨(sub(O
′
1)∧sub(O2))

L.6
⇐=⇒ usef(O2)∨(sub(O2)∧

usef(O1)).

89

�
�

�

Useful exp. rule O1⟨O2⟨⟨x⟩⟩[x�L⟨λy.t⟩]⟩ →oeu O1⟨L⟨O2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩ if usef(O1⟨O2⟩)
Non-useful exp. rule O1⟨O2⟨⟨x⟩⟩[x�L⟨λy.t⟩]⟩ →oenu O1⟨L⟨O2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩ if nusef(O1⟨O2⟩)

Figure 6.3: Simplified definition of useful and non-useful exponential variants of→oeabs , based
on Lemma 10.1.

• O1 = tO′1. We have: usef(tO′1⟨O2⟩)
L.6
⇐=⇒ usef(O′1⟨O2⟩)

i.h.

⇐=⇒ usef(O2)∨(sub(O2)∧

usef(O′1))
L.6
⇐=⇒ usef(O2)∨ (sub(O2)∧usef(O1)).

• O1 =O′1[x�t]. We have: usef(O′1⟨O2⟩[x�t])
L.6
⇐=⇒ usef(O′1⟨O2⟩)

i.h.

⇐=⇒ usef(O2)∨

(sub(O2)∧usef(O′1))
L.6
⇐=⇒ usef(O2)∨ (sub(O2)∧ sub(O1)).

• O1 = t[x�O′1]. We have: usef(O1⟨O2⟩)⇔ usef(t[x�O′1⟨O2⟩])
L.6
⇐=⇒ usef(O′1⟨O2⟩)

i.h.

⇐=⇒

usef(O2)∨ (sub(O2)∧usef(O′1))
L.6
⇐=⇒ usef(O2)∨ sub(O2)∧usef(O1).

3. This is a consequence of Lemma 7 and the previous point.

Thanks to Lemma 10, we can simplify the definition of useful exponential steps: an→oeabs
step

O1⟨O2⟨⟨x⟩⟩[x�L⟨λy.t⟩]⟩ →oeabs O1⟨L⟨O2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩

is useful if and only if O1⟨O2⟩ is useful. This leads to the definitions given in Figure 6.3.

6.4 Core factorization via postponement of non-useful
steps

In this section, following the discussion on useful/non-useful steps in Section 6.3, we define a
sub-reduction called the core reduction of λovsc, including useful steps→oeu in particular.
We then show that any non-erasing reduction sequence in λovsc, that is, a→o¬gc-reduction
sequence, can be factorized into a core part followed by a non-useful part (that consists of
→oenu only), and that the evaluation of a term terminates if and only if its core evaluation
terminates. Such a factorization allows us to establish a translation from (the core part of)
λovsc to λoxpos in the next section.

Core Reduction. The core reduction→ocore of λovsc is defined as→ocoreB→om ∪→oeu
∪→oevar , and Core λovsc is the calculus defined on VSC terms by the reduction→ocore. In
addition to multiplicative and useful exponential steps, which will be simulated by λoxpos, we
also include→oevar steps, which we choose not to classify as useful or non-useful and are
going to be absorbed by the translation to λoxpos. As we will see below, this choice is crucial
for our factorization theorem.

90

Postponement of non-useful steps. The factorization theorem we are about to establish
can also be stated as the postponement property of non-useful steps with respect to core steps.
Similar to how we dealt with→ogc steps in Propositions 33 and 34, we first show how→oenu
steps can be locally postponed. The proof of local postponement is straightforward but is way
more complicated than the one for→ogc, as it requires checking all the possible cases for a
core step following a→oenu step, which are quite technical to list exhaustively, given how
many contexts are involved in the definition of useful and non-useful steps.

In contrast to the case of→ogc, where local postponement consists of simply swapping
two consecutive steps, there is a tricky local postponement case for→oenu , where the swap
postponing→oenu requires to do one more core step (see Proposition 36.(2) below):

(xt)[x�y][y�λz.u] (xt)[x�λz.u][y�λz.u]

(yt)[x�y][y�λz.u] ((λz.u)t)[x�λz.u][y�λz.u]((λz.u)t)[x�y][y�λz.u]

oenu

oevar oeu
oeu oenu

This diagram justifies why we consider indirect useful steps in the λovsc non-useful and
also shows why→oevar steps are included as part of the core reduction in our setting. Note
that the solid lines are exactly what would usually be an indirectly useful step followed by a
directly useful one, and that for us they are simply a non-useful step followed by a useful one.
Also, note that the→oevar step is necessary for the next→oeu step to be performed.

Proposition 36 (Local postponement of→oenu). Let t and u be VSC terms. If t→oenu→ocore u
then t→ocore→oenu u or t→ocore→ocore→oenu u. More precisely:

1. →oenu→om ⊆→om→oenu ;

2. →oenu→oeu ⊆→oeu→oenu ∪→oevar→oeu→oenu ;

3. →oenu→oevar ⊆→oevar→oenu .

Proof. A detailed proof can be found in Appendix A.3.

Despite having a more complicated form of local postponement compared to that of→ogc,
we are still able to obtain the global postponement property easily, as these local swaps preserve
the number of non-useful steps.

Theorem 12 (Core factorization/postponement of non-useful steps). Let t and u be VSC terms.

If d : t→∗o¬gc u, then e : t→∗ocore→∗oenu u with |e|om = |d|om.

Proof. Let |d|core and |d|nu be the number of core and non-useful steps in d, respectively. We
prove the following refined statement: there exists a reduction sequence e : t→∗ocore→

|d|nu
oenu u

with |e|om = |d|om. By induction on the pair (|d|nu, |d|core) ordered lexicographically. If d is
empty the statement trivially holds by taking e as the empty sequence. If d is non-empty,
decompose it as follows:

d : t→∗o¬gc r︸ ︷︷ ︸
d′

→o¬gc u

Cases of r→o¬gc u:

91

1. r→oenu u. Then |d
′ |nu = |d|nu − 1. By i.h. (first component) applied to d′ , we obtain:

e : t→∗ocore→
|d|nu−1
oenu r→oenu u

which satisfies the statement.

2. r →ocore u. Then |d′ |core = |d|core − 1 and |d′ |nu = |d|nu. By i.h. (second component)
applied to d′ , we obtain:

t→∗ocore→
|d|nu
oenu r→ocore u

If |d|nu = 0 then the statement holds. Otherwise, we isolate the last→oenu step:

t→∗ocore→
|d|nu−1
oenu →oenu r→ocore u

and apply the local postponement property (Proposition 36) to the last two steps, obtain-
ing:

t→∗ocore→
|d|nu−1
oenu →+

ocore→oenu u

Lastly, we apply the i.h. (first component) to the central sequence →|d|nu−1oenu →+
ocore,

obtaining a sequence that satisfies the statement:

e : t→∗ocore→+
ocore→

|d|nu−1
oenu r→oenu u

The preservation of multiplicative steps follows from the two i.h. and the fact that local
postponement also preserves the number of multiplicative steps.

Lastly, we use the postponement property to prove that Coreλovsc is termination-equivalent
to λovsc, justifying the core terminology.

Theorem 13 (Termination equivalence between Core λovsc and λovsc).

1. t has a diverging→ovsc sequence if and only if t has a diverging→ocore sequence;

2. t is→ovsc-weakly normalizing if and only if t is→ocore-weakly normalizing.

Proof. 1. Direction⇐ is trivial because→ocore is a special case of→ovsc.
For direction⇒, let t be a term having a→ovsc-diverging reduction sequence d. We prove
that t has a→ocore-diverging sequence e. Consider the finite prefixes dn : t→∗ovsc un
for n ∈ N of d. By local termination (Proposition 35), the number of multiplicative
steps in dn tends to infinity when n grows. By postponing first→ogc (Proposition 34)
and then→oenu (Theorem 12), all the sequences dn can be re-organized as sequences
en : t→∗ocore→∗oenu→

∗
ogc un in a way that preserves the number of multiplicative steps,

which are all in the→ocore-prefix of en. Thus, t is→ocore-diverging.

92

'

&

$

%

Translation of substitution contexts
J⟨·⟩K B (⟨·⟩, ·) JL[x�t]K B (E′⟨E{x�y}⟩,σ {x�y}) where JLK = (E,σ)

and JtK = E′⟨y⟩

Translation of terms
JxK B x

Jλx.tK B y[y�λx.JtK]
Jt[x�u]K B E⟨JtK{x�y}⟩ where JuK = E⟨y⟩

JL⟨λx.t⟩uK B E⟨E′⟨y[y�(λx.JtKσ)z]⟩⟩ where JLK = (E,σ) and JuK = E′⟨z⟩
JtuK B E⟨E′⟨y[y�xz]⟩⟩ where JtK = E⟨x⟩ and JuK = E′⟨z⟩

if t is not an answer

Figure 6.4: The translation from λovsc to λoxpos.

2. For direction⇒, let d : t→∗ovsc u be a reduction sequence leading to a→ovsc normal
form. By postponing first→ogc (Proposition 34) and then→oenu (Theorem 12), we obtain
a reduction sequence d : t→∗ocore r→∗oenu→

∗
ogc u for some r . Now, it is clear that→oenu

and→ogc cannot remove→ocore redexes. Thus, r is→ocore-normal. For direction⇐,
let d : t→∗ocore u be a reduction sequence leading to a→ocore normal form. By local
termination,→oenu ∪→ogc is strongly normalizing, thus u→∗ocore r for some r that is
a (→oenu ∪→ogc) normal form. It is clear that→oenu and→ogc cannot create→ocore
redexes. Thus, r is→ovsc-normal.

6.5 Simulating core λovsc in λoxpos

In this section, we define a translation J · K from λovsc to λoxpos and show that it induces a
simulation of the core reduction→ocore of λovsc by λoxpos.

Before getting into the definition of the translation, we start by discussing some subtleties
in establishing such a translation.

Subtlety 1: Absorption of variables. ESs of variables are allowed in λovsc but not in λoxpos.
This forces the translation to turn these ESs of variables into (meta-level) variable renaming in
λoxpos. For instance, we shall have Jt[x�y]K = JtK{x�y}.

Subtlety 2: Naive definitions and applied answers. It is natural to define J · K as a naive
translation that introduces a sharing point, that is, an ES, for every non-variable sub-term,
which gives the following definition (where the meta-level substitution {x�y} in the last case
is necessary as explained above):

JxK B x JtuK B E⟨E′⟨x⟩[x�yz]⟩ where JtKB E⟨y⟩ and JuK = E′⟨z⟩
Jλx.tK B y[y�λx.JtK] Jt[x�u]K B E⟨JtK{x�y}⟩ where JuK = E⟨y⟩
Unfortunately, such a definition does not induce a simulation of Core λovsc. Consider, for
example, the following→oeu step:

93

t B (xx)[x�λy.u] →oeu ((λy.u)x)[x�λy.u] =: t′

Using the naive translation above, one would need to have:

JtK = z[z�xx][x�λy.JuK] →∗ox+ z[z�wx][w�λy.JuK][x�λy.JuK] = Jt′K

It is, however, impossible to perform such a duplication of ESs in λoxpos. As a result, inspired
by this example, we propose an alternative translation that allows simulating the→oeu step
above with a→oe+ step in λoxpos.

Essentially, such a translation should behave differently on applied abstractions—more gen-
erally, on applied answers (answers are abstractions in a substitution context, see Figure 6.1).
This is possible thanks to the additional form of ESs in λoxpos. The detailed definition of this
new translation can be found in Figure 6.4. In fact, the translation JtK of terms is defined by
mutual induction with the translation JLK of substitution contexts, which is used in the case
of applied answers. Because of the absorption of variables, the translation JLK of substitution
contexts L is not simply an evaluation context of λoxpos but a pair of an evaluation context
E and a variable renaming σ , that is, a meta-level substitution of variables for variables. For
instance, J⟨·⟩[x�λy.t][z�w][w�x′]K = (E,σ) with E B ⟨·⟩[x�λy.JtK] and σ B {z�w}{w�x′}.

The next lemma shows that such a translation of substitution contexts is compositional.

Lemma 11. Let L⟨t⟩ be a VSC term and JLK = (E,σ). Then JL⟨t⟩K = E⟨JtKσ⟩.

Proof. Straightforward by induction on L.

Simulation. Core reduction→ocore is made out of three kinds of steps, namely→om,→oeu ,
and→oevar . Given the special role of answers in the definition of J·K, the proof of the simulation
becomes tricky when core steps can turn an applied non-answer into an applied answer. This
can happen with both→om and→oeu steps, which are then discussed in detail in the next
paragraphs. The→oevar rule, instead, does not alter whether sub-terms are answers, and so the
proof that→oevar steps are absorbed is straightforward, using the following immediate lemma.

Lemma 12. Let t be a VSC term and x,y be variables. Then Jt{x�y}K = JtK{x�y}.

Proof. Straightforward by induction on t.

Lemma 13 (Absorption of→oevar). Let t and u be VSC terms. If t→oevar u then JtK = JuK.

Proof. By induction on t→oevar u. Cases:

• Root step: O⟨⟨x⟩⟩[x�L⟨y⟩] 7→evar L⟨O⟨⟨y⟩⟩[x�y]⟩. Let JLK = (E,σ). By Lemma 11,
JL⟨y⟩K = E⟨yσ⟩. Then:

JO⟨⟨x⟩⟩[x�L⟨y⟩]K = E⟨JO⟨⟨x⟩⟩K{x�yσ }⟩
= E⟨JO⟨⟨x⟩⟩{x�yσ }K⟩
= E⟨JO⟨⟨yσ⟩⟩{x�yσ }K⟩
= E⟨JO⟨⟨yσ⟩⟩K{x�yσ }⟩
= E⟨JO⟨⟨y⟩⟩K{x�y}σ⟩
= E⟨JO⟨⟨y⟩⟩[x�y]Kσ⟩
=L.11 JL⟨O⟨⟨y⟩⟩[x�y]⟩K

94

• Inductive cases: the statement follows immediately from the i.h. and the definition of
the translation.

The following proposition establishes a relation between free variables of a VSC term (resp.
substitution context) and those of its image by J · K.

Proposition 37 (Translation and free variables).

• For any VSC term t, f v(JtK) ⊆ f v(t).

• For any VSC substitution context L, if JLK = (E,σ), then f v(E) ⊆ f v(L) and range(σ) \
(dom(σ)∪ bv(E)) ⊆ f v(L).

Here, for σ = {x1�y1} · · · {xn�yn}, dom(σ) is the set {x1, . . . ,xn} and range(σ) is the set {y1, . . . , yn}.

Proof. By induction on the translation of terms and substitution contexts. The base cases (the
empty context and variables) are trivial. For the inductive cases:

• JL[x�t]K = (E′⟨E{x�y}⟩,σ {x�y})where JLK = (E,σ) and JtK = E′⟨y⟩. Let z ∈ f v(E′⟨E{x�y}⟩).
Two cases to consider:

– z ∈ f v(E) and z , x. By i.h., z ∈ f v(L). Therefore, we have z ∈ f v(L[x�t]).
– z ∈ f v(E′) or (z = y and y < bv(E′)). Then z ∈ f v(E′⟨y⟩) = f v(JtK). By i.h.,

z ∈ f v(t) ⊆ f v(L[x�t]).

Now letw ∈ range(σ {x�y})\(dom(σ {x�y})∪bv(E′⟨E{x�y}⟩)). Two cases to consider:

– w ∈ range(σ). Then w ∈ (range(σ) \ (dom(σ)∪ bv(E))) \ {x}. By i.h., w ∈ f v(L) \
{x} ⊆ f v(L[x�t]).

– w = y and w < bv(E′). Then w ∈ f v(E′⟨y⟩). By i.h., w ∈ f v(t) ⊆ f v(L[x�t]).

• Jt[x�u]K = E⟨JtK{x�y}⟩ where JuK = E⟨y⟩. Let z ∈ f v(E⟨JtK{x�y}⟩). Two cases to
consider:

– z ∈ f v(JtK) and z , x. By i.h., z ∈ f v(t). Therefore, z ∈ f v(t[x�u]).
– z ∈ f v(E) or (z = y and y < bv(E)). Then z ∈ f v(E⟨y⟩). By i.h., z ∈ f v(u) ⊆

f v(t[x�u]).

• Jλx.tK = y[y�λx.JtK]. Then f v(Jλx.tK) = f v(JtK) \ {x} ⊆ f v(t) \ {x} = f v(λx.t) by i.h..

• JL⟨λx.t⟩uK = E⟨E′⟨y[y�(λx.JtKσ)z]⟩⟩ where JLK = (E,σ) and JuK = E′⟨z⟩. Let w ∈
f v(E⟨E′⟨y[y�(λx.JtKσ)z]⟩⟩). Four cases to consider:

– w ∈ f v(E′) or (w = z and z < bv(E′)). Then w ∈ f v(E′⟨z⟩). By i.h., w ∈ f v(u) ⊆
f v(L⟨λx.t⟩u).

– w ∈ f v(E). By i.h., w ∈ f v(L) ⊆ f v(L⟨λx.t⟩u).
– w ∈ f v(JtK) andw < dom(σ)∪{x}. By i.h.,w ∈ f v(t)\(dom(σ)∪{x}) ⊆ f v(L⟨λx.t⟩u)

since L only captures variables in dom(σ).

95

– w ∈ range(σ) \ (dom(σ)∪ bv(E)). By i.h., w ∈ f v(L) ⊆ f v(L⟨λx.t⟩u).

• JL⟨t⟩uK = E⟨E′⟨y[y�xz]⟩⟩ where JL⟨t⟩K = E⟨x⟩ and JuK = E′⟨z⟩. Let w ∈
f v(E⟨E′⟨y[y�xz]⟩⟩). Two cases to consider:

– w ∈ f v(E) or (w = x and x < bv(E)). Then w ∈ f v(E⟨x⟩). By i.h., w ∈ f v(L⟨t⟩) ⊆
f v(L⟨t⟩u).

– w ∈ f v(E′) or (w = z and z < bv(E′)). Then w ∈ f v(E′⟨z⟩). By i.h., w ∈ f v(u) ⊆
f v(L⟨t⟩u).

Now we can simulate root multiplicative steps smoothly.

Lemma 14 (Simulation of root multiplicative steps). Let t and u be VSC terms. If t 7→m u then

JtK→om+
JuK.

Proof. Let t = L⟨λx.r⟩q 7→m L⟨r[x�q]⟩ = u and let the translations of L and the sub-terms be
JLK = (E,σ), JqK = E′⟨y⟩, and JrK = E′′⟨w⟩. By Lemma 11,

JL⟨r[x�q]⟩K = E⟨Jr[x�q]Kσ⟩ = E⟨E′⟨JrK{x�y}⟩σ⟩ = E⟨E′⟨JrKσ {x�y}⟩⟩

since dom(σ)∩ f v(JqK) ⊆ bv(L)∩ f v(q) = ∅ by Proposition 37. Then:

JL⟨λx.r⟩qK = E⟨E′⟨z[z�(λx.JrKσ)y]⟩⟩
= E⟨E′⟨z[z�(λx.E′′⟨w⟩σ)y]⟩⟩
= E⟨E′⟨z[z�(λx.E′′σ⟨wσ⟩)y]⟩⟩
→om+

E⟨E′⟨E′′σ⟨z{z�wσ }⟩{x�y}⟩⟩
= E⟨E′⟨E′′σ⟨wσ⟩{x�y}⟩⟩
= E⟨E′⟨E′′⟨w⟩σ {x�y}⟩⟩
= E⟨E′⟨JrKσ {x�y}⟩⟩
= JL⟨r[x�q]⟩K

As mentioned earlier, the simulation of multiplicative steps becomes tricky when moving
from root steps to general steps via contextual closure, because in a root step L⟨λx.t⟩u 7→m
L⟨t[x�u]⟩ the redex is not an answer but the reduct might be one, if t is an abstraction. Thus,
if the root step is applied to a further argument r , the reduction turns an applied non-answer
into an applied answer, changing the clause of the translation that is used for the application
to r . This phenomenon can be handled thanks to two additional rewriting steps in λoxpos. The
simplest case is the following one, where t = y, u = z, r = w, and L = ⟨·⟩ and x′ , y′ , z′ are
variables introduced by the translation:

96

(λx.λy.y)zw

(λy.y)[x�z]w

x′[x′�y′w][y′�(λx.z′[z′�λy.y])z]

x′[x′�(λy.y)w]

x′[x′�z′w][z′�λy.y]

x′[x′�(λy.y)w][z′�λy.y]

om

J · K

J · K

om+

oe+

ogc+

To extend the simulation of root steps to general steps by induction, we need the following
lemma that essentially guarantees that simulating steps in λoxpos that are obtained by i.h.

can be extended to the translation of a larger term, despite some term re-arrangement (of
substitution contexts, for example) done by the definition of the translation J · K.

Lemma 15 (Contextual lifting of rewriting steps). Let E be such that it does not capture variables

of E′′ , v′′ , and z, and let a ∈ {m+,e+,gc+}.

1. If E⟨x⟩ →oa E
′⟨x′⟩, then:

(a) E⟨E′′⟨y[y�xz]⟩⟩ →oa E
′⟨E′′⟨y[y�x′z]⟩⟩,

(b) E′′⟨E⟨y[y�v′′x]⟩⟩ →oa E
′′⟨E′⟨y[y�v′′x′]⟩⟩,

(c) E⟨E′′⟨z⟩{w�x}⟩ →oa E
′⟨E′′⟨z⟩{w�x′}⟩, and

(d) E′′⟨E⟨x⟩{w�z}⟩ →oa E
′′⟨E′⟨x′⟩{w�z}⟩.

2. If E⟨x[x�v]⟩ →oa E
′⟨x[x�v′]⟩, then E⟨E′′⟨y[y�vz]⟩⟩ →oa E

′⟨E′′⟨y[y�v′z]⟩⟩.

Proof. Trivial for e+ and gc+ as they take place entirely in E. For a = m+, we prove the
second point here (the first point can be treated similarly). It is clear that E is of the form
E1⟨E2[w�(λx′.E3⟨y′⟩)z′]⟩ and we have

E1⟨E2⟨x[x�v]⟩[w�(λx′.E3⟨y′⟩)z′]⟩ →om+
E1⟨E3⟨E2⟨x[x�v]⟩{w�y′}⟩{x′�z′}⟩.

Therefore, E′ = E1⟨E3⟨E2{w�y′}⟩{x′�z′}⟩ and v′ = v{w�y′}{x′�z′}. Then we have:

E⟨E′′⟨y[y�vz]⟩⟩ = E1⟨E2⟨E′′⟨y[y�vz]⟩⟩[w�(λx′.E3⟨y′⟩)z′]⟩
→om+

E1⟨E3⟨E2⟨E′′⟨y[y�vz]⟩⟩{w�y′}⟩{x′�z′}⟩
= E′⟨E′′⟨y[y�vz]⟩{w�y′}{x′�z′}⟩
= E′⟨E′′⟨y[y�v′z]⟩⟩

The last equality holds since both w and x′ are not free in E′′ or z.

In general, we have the following simulation of multiplicative steps, where the first case
isolates exactly when applied non-answers are turned into applied answers.

Proposition 38 (Simulation of→om steps). Let t and u be VSC terms and t 7→m u.

1. If u is an answer and usef(O) then JO⟨t⟩K→om+
→oe+→ogc+ JO⟨u⟩K;

97

2. Otherwise, JO⟨t⟩K→om+
JO⟨u⟩K.

Proof. By induction on O. The base case, for which O = ⟨·⟩ and thus O is non-useful and case
(2) should hold, is already treated in Lemma 14. Note that if t 7→m u then t is not an answer.
Cases (the first is the interesting/difficult one):

• O =O′t′ . This case is the difficult one because the shape of the translations of O⟨t⟩ and
O⟨u⟩ depends on O′ and whether u is an answer.

1. Let u be an answer and usef(O). By Lemma 6, we have usef(O′) or sub(O′):
(a) If usef(O′) then JO′⟨t⟩K →om+

→oe+→ogc+ JO′⟨u⟩K by i.h. Let JO′⟨t⟩K =
E1⟨x⟩, JO′⟨u⟩K = E4⟨x′⟩. Note that usef(O′) implies nsub(O′). Thus, whether
O′⟨u⟩ is an answer is independent of u and depends only on O′ , that is, O′⟨u⟩
is an answer if and only if O′⟨t′⟩ is an answer for every t′ . Therefore, O′⟨t⟩
and O′⟨u⟩ are either both answers or both non-answers. In both cases, the
statement easily follows from the i.h., lifting the steps using Lemma 15.2 if both
are answers, and using Lemma 15.1.(a) if instead they are not.

(b) If sub(O′) then let us write L for O′ . Since t 7→m u, for some r and q we have:
t = L′⟨λx.r⟩q 7→m L′⟨r[x�q]⟩ = u

Since u is an answer, we also have r = L′′⟨λy.p⟩ for some p, so that:
t = L′⟨λx.L′′⟨λy.p⟩⟩q 7→m L′⟨L′′⟨λy.p⟩[x�q]⟩ = u.

Note that L⟨u⟩ is an answer while L⟨t⟩ is not. This is the tricky case of this
proof. In order to express JO⟨t⟩K = JL⟨t⟩t′K and JO⟨u⟩K = JL⟨u⟩t′K, we now
express JL⟨t⟩K and JL⟨u⟩K as in the definition given in Figure 6.4. Let
– JLK = (E,σ);
– JL′K = (E′,σ ′);
– JL′′K = (E′′,σ ′′) and JrK = JL′′⟨λy.p⟩K = E′′⟨z′[z′�λy.JpKσ ′′]⟩;
– JqK = E′′′⟨z⟩;

We have:
JtK = JL′⟨λx.r⟩qK

= E′⟨E′′′⟨w[w�(λx.JrKσ ′)z]⟩⟩
and

JL⟨t⟩K = E⟨JtKσ⟩
= E⟨E′⟨E′′′⟨w[w�(λx.JrKσ ′)z]⟩⟩σ⟩
= E⟨E′σ⟨E′′′σ⟨w[w�(λx.JrKσ ′σ)z]⟩⟩⟩

Also:
JuK = JL′⟨r[x�q]⟩K

= E′⟨Jr[x�q]Kσ ′⟩
= E′⟨E′′′⟨JrK{x�z}⟩σ ′⟩
= E′⟨E′′′⟨E′′⟨y′[y′�λy.JpKσ ′′]⟩{x�z}⟩σ ′⟩
= E′⟨E′′′⟨E′′{x�z}σ ′⟨y′[y′�λy.JpKσ ′′{x�z}σ ′]⟩⟩⟩

by Proposition 37 since L′ does not capture the free variables of p, and
JL⟨u⟩K = E⟨JuKσ⟩

= E⟨E′⟨E′′′⟨E′′{x�z}σ ′⟨y′[y′�λy.JpKσ ′′{x�z}σ ′]⟩⟩⟩σ⟩
= E⟨E′σ⟨E′′′σ⟨E′′{x�z}σ ′σ⟨y′[y′�λy.JpKσ ′′{x�z}σ ′σ]⟩⟩⟩⟩

98

Let Jt′K = Et′⟨w′⟩. We have:

JO′⟨t⟩t′K = E⟨E′σ⟨E′′′σ⟨Et′ ⟨y′[y′�ww′]⟩[w�(λx.JrKσ ′σ)z]⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨Et′ ⟨y′[y′�ww′]⟩[w�(λx.E′′⟨z′[z′�λy.JpKσ ′′]⟩σ ′σ)z]⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨Et′ ⟨y′[y′�ww′]⟩[w�(λx.E′′σ ′σ⟨z′[z′�λy.JpKσ ′′σ ′σ]⟩)z]⟩⟩⟩
→om+ E⟨E′σ⟨E′′′σ⟨E′′σ ′σ⟨Et′ ⟨y′[y′�z′w′]⟩[z′�λy.JpKσ ′′σ ′σ]⟩{x�z}⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨E′′σ ′σ {x�z}⟨Et′ ⟨y′[y′�z′w′]⟩[z′�λy.JpKσ ′′σ ′σ {x�z}]⟩⟩⟩⟩
→oe+ E⟨E′σ⟨E′′′σ⟨E′′σ ′σ {x�z}⟨Et′ ⟨y′[y′�(λy.JpKσ ′′σ ′σ {x�z})w′]⟩[z′�λy.JpKσ ′′σ ′σ {x�z}]⟩⟩⟩⟩
→ogc+ E⟨E′σ⟨E′′′σ⟨E′′σ ′σ {x�z}⟨Et′ ⟨y′[y′�(λy.JpKσ ′′σ ′σ {x�z})w′]⟩⟩⟩⟩⟩
= E⟨E′σ⟨E′′′σ⟨E′′{x�z}σ ′σ⟨Et′ ⟨y′[y′�(λy.JpKσ ′′{x�z}σ ′σ)w′]⟩⟩⟩⟩⟩
= JO′⟨u⟩t′K

2. nusef(O). By Lemma 6.1, we have nusef(O′) and nsub(O′). Note that nsub(O′)
implies that whether O′⟨u⟩ is an answer is independent of u and depends only
on O′ , that is, O′⟨u⟩ is an answer if and only if O′⟨t′⟩ is an answer for every t′ .
Therefore, O′⟨t⟩ and O′⟨u⟩ are either both answers or both non-answers. By i.h.,
JO′⟨t⟩K→om+

JO′⟨u⟩K. In both cases, then the statement easily follows from the
i.h., lifting the step using Lemma 15.2 if both are answers, and using Lemma 15.1.(a)
if instead they are not.

3. u is not an answer. We have that both t and u are not answers, so O′⟨t⟩ is an
answer if and only if O′⟨u⟩ is, and the details go as in the previous case.

• O = t′O′ .

1. usef(O) andu is an answer. By Lemma 6.2, we haveusef(O′) and then JO′⟨t⟩K→om+
→oe+→ogc+

JO′⟨u⟩K by i.h. The statement easily follows from the i.h., lifting the steps using
Lemma 15.1.(b).

2. nusef(O) or u is not an answer. If u is not an answer we can apply the i.h. If u is an
answer note that then nusef(O) holds, which implies nusef(O′) by Lemma 6.2, so
that we can apply the i.h. anyway. Therefore, JO′⟨t⟩K→om+

JO′⟨u⟩K by i.h. Then
it goes exactly as Point 1, except that only one rewriting step (instead of three) is
transported by the extension of the evaluation context.

• O =O′[x�t′].

1. usef(O) andu is an answer. By Lemma 6.3, we haveusef(O′) and then JO′⟨t⟩K→om+
→oe+→ogc+

JO′⟨u⟩K by i.h. The statement easily follows from the i.h., lifting the steps using
Lemma 15.1.(d).

2. nusef(O) or u is not an answer. If u is not an answer we can apply the i.h. If u is an
answer note that then nusef(O) holds, which implies nusef(O′) by Lemma 6.3, so
that we can apply the i.h. anyway. Therefore, JO′⟨t⟩K→om+

JO′⟨u⟩K by i.h. Then
it goes exactly as Point 1, except that only one rewriting step (instead of three) is
transported by the extension of the evaluation context.

• O = t′[x�O′]. As the previous case, except that the use of Lemma 6.3 is replaced by
Lemma 6.4, and the use of Lemma 15.1.(d) is replaced by Lemma 15.1.(c).

Like multiplicative steps, exponential steps can turn applied non-answers into applied
answers too. Such steps correspond precisely to our definition of useful exponential steps. In

99

'

&

$

%

Useful exp. root rule 1 U⟨⟨x⟩⟩[x�L⟨λy.t⟩] 7→eu1
L⟨U⟨⟨λy.t⟩⟩[x�λy.t]⟩

Useful exp. root rule 2 L1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩u 7→eu2
L1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩u

Contextual closure
t 7→a t

′
a∈{eu1 ,eu2}O⟨t⟩ →oa O⟨t′⟩

Figure 6.5: Two root rules for→oeu .

contrast to the multiplicative case, the simulation simply maps one→oeu step in λovsc to one
→oe+ step in λoxpos, without the need of extra steps.

The tricky point of this case lies in the definition of useful steps given in Figure 6.3. To see
whether a step if useful or not, we need to have a global view of it, justified by the presence of
the open context (O1 in Figure 6.3) closing the root step. Such a definition makes it difficult to
prove it by induction, that is, to first prove the root case and then extend it by the inductive
definition of contexts.

To get around this issue, in Figure 6.5 we give an alternative definition of→oeu based on
two root rules, where the second rule captures the cases when the argument of the created
redex is provided by the context. With these two root rules, useful exponential steps can then
be defined via a closure by any open context. This alternative definition eventually faciliates
any reasoning on useful steps by induction, which is the case of proving the simulation, in
particular. We prefer, however, using the global definition in Section 6.3 as it is more intuitive
and the crucial proof of local postponement (Proposition 36) does not involve any induction.

The alternative definition is justified by the following lemma.

Lemma 16 (Alternative presentation of useful steps). →oeu=→oeu1
∪→oeu2

.

Proof. It is clear that→oeu1
∪ →oeu2

⊆→oeu . It suffices to prove the other inclusion. An eu
step has the form:

O1⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩ →oeu O1⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩

with usef(O1⟨O2⟩). By Lemma 10.2, there are two cases:

• usef(O2). In this case, we haveO1⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩ →oeu1
O1⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩.

• sub(O2) and usef(O1). Since we have usef(O1),O1 can bewritten asO⟨L′u⟩ for someO,
L′ , and u. Then we have O1⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩ = O⟨L′⟨O2⟨x⟩[x�L⟨λy.t⟩]⟩u⟩ →oeu2
O⟨L′⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩t⟩ =O1⟨L⟨O2⟨λy.t⟩[x�λy.t]⟩⟩

For the simulation of→oeu1
, we need the following proposition, which characterizes the

shape of the translation of values in useful contexts.

Proposition 39 (Translation of useful contexts surrounding values). Let U be a useful VSC

context. Then there exist E, t, and z such that for all values v satisfying f v(v)∩ bv(U) = ∅ the
translation verifies JU⟨v⟩K = E⟨t[y�JvKz]⟩.

Proof. By definition U =O⟨Lt⟩. The proof is by induction on O.

100

• Base case, that is, O = ⟨·⟩ and U = Lt. Let JLK = (E,σ) and JtK = E′⟨z⟩. Cases of v:

– Variable, that is, v = x < bv(U) ⊇ bv(L). Then JL⟨x⟩K = E⟨xσ⟩ = E⟨x⟩. Therefore,
JU⟨x⟩K = E⟨E′⟨y[y�xz]⟩⟩.

– Abstraction, that is, v = λw.u. Note that the hypothesis f v(λw.u)∩ bv(U) = ∅
and Proposition 37 imply that JuKσ = JuK. Then: JU⟨λw.u⟩K = JL⟨λw.u⟩tK =
E⟨E′⟨y[y�(λw.JuKσ)z]⟩⟩ = E⟨E′⟨y[y�(λw.JuK)z]⟩⟩.

• U =U ′r . By i.h., there exist E, t, and z such that for all v satisfying f v(v)∩ bv(U ′) = ∅
the translation verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. Let JrK = E′⟨x′⟩. There are two cases
to consider, depending on whether U ′⟨v⟩ is an answer. Note that U ′ by definition is not
a substitution context, so that U ′⟨v⟩ being an answer is independent from whether v is
a variable or an abstraction. Cases:

– U ′⟨v⟩ is an answer L⟨λy′.p⟩. Let JLK = (E′′,σ). We know that E⟨t[y�JvKz]⟩ =
JU ′⟨v⟩K = JL⟨λy′.p⟩K =L.11 E

′′⟨z′[z′�λy′.JpKσ]⟩ for some E′′ and z′ . Therefore, t
is of the form E′′′⟨z′[z′�λy′.JpKσ]⟩ for some E′′′ satisfying E′′ = E⟨E′′′[y�JvKz]⟩.
Then the statement holds:

JU ′⟨v⟩rK = E′′⟨E′⟨z′[z′�(λy′.JpKσ)x′]⟩⟩
= E⟨E′′′⟨E′⟨z′[z′�(λy′.JpKσ)x′]⟩⟩[y�JvKz]⟩.

– t = U ′⟨v⟩ is not an answer. We have E⟨t[y�JvKz]⟩ = JU ′⟨v⟩K = E′′⟨z′⟩ for some
E′′ and z′ . Therefore, t is of the form E′′′⟨z′⟩ for some E′′′ satisfying E′′ =
E⟨E′′′[y�JvKz]⟩. Then the statement holds:

JU ′⟨v⟩rK = E′′⟨E′⟨w[w�z′x′]⟩⟩
= E⟨E′′′⟨E′⟨w[w�z′x′]⟩⟩[y�JvKz]⟩.

• U = rU ′ . By i.h., there existE, t, and z such that for all v satisfying f v(v)∩bv(U ′) = ∅ the
translation verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. There are two cases to consider, depending
on whether r is an answer. Cases:

– r is an answer L⟨λw.q⟩. Let JLK = (E′,σ). Let t = E′′⟨x′⟩. Then the statement holds:

JrU ′⟨v⟩K = E′⟨E⟨E′′⟨y′[y′�(λw.JqKσ)x′]⟩[y�JvKz]⟩⟩.

– r is not an answer. Let JrK = E′⟨w⟩ and t = E′′⟨x′⟩. Then the statement holds:

JrU ′⟨v⟩K = E′⟨E⟨E′′⟨y′[y′�wx′]⟩[y�JvKz]⟩⟩.

• U = r[w�U ′]. By i.h., there existE, t, and z such that for all v satisfying f v(v)∩bv(U ′) =
∅ the translation verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. Let t = E′⟨x′⟩. Then the statement
holds:

Jr[w�U ′⟨v⟩]K = E⟨E′⟨JrK{w�x′}⟩[y�JvKz]⟩.

• U =U ′[w�r]. By i.h., there existE, t, and z such that for all v satisfying f v(v)∩bv(U ′) =
∅ the translation verifies JU ′⟨v⟩K = E⟨t[y�JvKz]⟩. Let JrK = E′⟨x′⟩. Since w ∈ bv(U),
w < f v(v) ⊃ f v(JvK) by Proposition 37. Then the statement holds:

101

JU ′⟨v⟩[w�r]K = E′⟨E⟨t[y�JvKz]⟩{w�x′}⟩
= E′⟨Eσ⟨tσ [y�JvK(zσ)]⟩⟩

where σ = {w�x′}.

The simulation can now be proved smoothly by induction via the alternative definition.

Proposition 40 (Simulation of useful exponential steps). Let t and u be VSC terms. If t→oeu1
u

or t→oeu2
u then JtK→oe+ JuK.

Proof. The root cases:

• Useful exponential root rule 1: U⟨⟨x⟩⟩[x�L⟨λy.t⟩] 7→eu1
L⟨U⟨⟨λy.t⟩⟩[x�λy.t]⟩. Let

JLK = (E,σ). By Lemma 11, JL⟨λy.t⟩K = E⟨z[z�λy.JtKσ]⟩. By Proposition 39, there exist
E′′ , u, and x′ such that JU⟨⟨x⟩⟩K = E′′⟨u[w�xx′]⟩ and JU⟨⟨λy.t⟩⟩K = E′′⟨u[w�(λy.JtK)x′]⟩.
Then:

JU⟨⟨x⟩⟩[x�L⟨λy.t⟩]K =L.11 E⟨JU⟨⟨x⟩⟩K{x�z}[z�λy.JtKσ]⟩
=P rop. 39 E⟨E′′⟨u[w�xx′]⟩{x�z}[z�λy.JtKσ]⟩
= E⟨E′′⟨u[w�zx′]⟩{x�z}[z�λy.JtKσ]⟩
→oe+ E⟨E′′⟨u[w�(λy.JtKσ)x′]⟩{x�z}[z�λy.JtKσ]⟩
= E⟨E′′⟨u[w�(λy.JtK)x′]⟩{x�z}[z�λy.JtK]σ⟩
=P rop. 39 E⟨JU⟨⟨λy.t⟩⟩K{x�z}[z�λy.JtK]σ⟩
= E⟨JU⟨λy.t⟩[x�λy.t]Kσ⟩
=L.11 JL⟨U⟨λy.t⟩[x�λy.t]⟩K

• Useful exponential root rule 2: L1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩u 7→eu2
L1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩u.

Let JL1K = (E1,σ1), JL2K = (E2,σ2), JL3K = (E3,σ3), JtK = E⟨z⟩, and JuK = E′⟨w⟩.
By Lemma 11, JL3⟨λy.t⟩K = E3⟨x′[x′�λy.JtKσ3]⟩. Then:

JL1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩K = E1⟨JL2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]Kσ1⟩
= E1⟨E3⟨JL2⟨⟨x⟩⟩K{x�x′}[x′�λy.JtKσ3]⟩σ1⟩
=α E1⟨E3⟨JL2⟨⟨x⟩⟩K[x�λy.JtKσ3]⟩σ1⟩
=x<dom(σ2) E1⟨E3⟨E2⟨⟨x⟩⟩[x�λy.JtKσ3]⟩σ1⟩
= E1⟨E3σ1⟨E2σ1⟨⟨x⟩⟩[x�λy.JtKσ3σ1]⟩⟩

and since L1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩ is not an answer,

JL1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩uK = E1⟨E3σ1⟨E2σ1⟨E′⟨x′[x′�xw]⟩⟩[x�λy.JtKσ3σ1]⟩⟩.

Similarly, keeping in mind that L2 does not capture any variable of λy.t, we have:

JL1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩K = E1⟨JL3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩Kσ1⟩
= E1⟨E3⟨JL2⟨⟨λy.t⟩⟩[x�λy.t]Kσ3⟩σ1⟩
= E1⟨E3⟨JL2⟨⟨λy.t⟩⟩K[x�λy.JtK]σ3⟩σ1⟩
= E1⟨E3⟨E2⟨x′[x′�λy.JtK]⟩[x�λy.JtK]σ3⟩σ1⟩
= E1⟨E3σ1⟨E2σ1⟨x′[x′�λy.JtKσ3σ1]⟩[x�λy.JtKσ3σ1]⟩⟩

102

and, since L1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩ is an answer, we have:

JL1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩uK =
E1⟨E3σ1⟨E2σ1⟨E′⟨x′[x′�(λy.JtKσ3σ1)w]⟩⟩[x�λy.JtKσ3σ1]⟩⟩.

Then, it is clear that JL1⟨L2⟨⟨x⟩⟩[x�L3⟨λy.t⟩]⟩uK→oe+ JL1⟨L3⟨L2⟨⟨λy.t⟩⟩[x�λy.t]⟩⟩uK.

For the inductive cases, note that 7→eu1
and 7→eu2

cannot alter the shape of answers and non-
answers. Then, the statement follows immediately from the i.h., the definition of the translation,
and the lifting given by Lemma 15.

Summing Up. We can now put together the simulations of single core steps, and also iterate
over reduction sequences. Since one multiplicative step in λovsc is simulated by more than one
step in λoxpos at times, the simulation does not preserve reduction lengths. Note, however, that
the number of multiplicative steps—which is the cost model of λovsc—is preserved. Moreover,
the increment in reduction lengths by simulation is at most linear.

Theorem 14 (Simulation of core sequences). Let d : t→∗ocore t′ be a reduction sequence inλovsc.

Then there exists e : JtK→∗ox+ Jt′K in λoxpos such that |e|om+
= |d|om and |d|om,oeu ≤ |e| ≤ 3 · |d|.

6.6 Core normal forms and termination equivalence
In this section, we show that the translation J ·K preserves and reflects termination: t terminates
if and only if JtK terminates. Reflection is simply a consequence of the simulation theorem: if JtK
terminates then t cannot diverge, because JtK can simulate it. Preservation is instead proved by
showing that core normal forms (→ocore-normal forms) are mapped to (non-erasing) positive
normal forms, i.e.,→ox+¬gc-normal forms. Such a result can be proved via a characterization
of core normal forms.

Characterization of Core Normal Forms. In order to characterize core normal forms, we
need a few auxiliary definitions. We start by defining two sets of variables for terms.

Definition 30 (Open and applied open free variables). The set ofv(t) of open free variables
of a VSC term t is the set of variables of t having occurrences out of all abstractions, formally

defined as follows:

ofv(x) B {x} ofv(tu) B ofv(t)∪ ofv(u)
ofv(λx.t) B ∅ ofv(t[x�u]) B (ofv(t) \ {x})∪ ofv(u)

The set aofv(t) of applied open free variables of a VSC term t is the set of variables of t having
applied occurrences out of all abstractions, formally defined as follows:

aofv(x) = aofv(λx.t) B ∅
aofv(t[x�u]) B (aofv(t) \ {x})∪ aofv(u)

aofv(tu) B aofv(t)∪ aofv(u)∪ {x} if t = L⟨⟨x⟩⟩
aofv(tu) B aofv(t)∪ aofv(u) otherwise

Lemma 17. Let t be a VSC term. Then aofv(t) ⊆ ofv(t).

103

Proof. Straightforward by induction on t. Note that x ∈ ofv(L⟨⟨x⟩⟩).

We also need a weakened notion of answer.

Definition 31 (Almost answer). An almost answer is an answer or a VSC term of the form

L⟨L′⟨x⟩[x�t]⟩ with t an answer.

Finally, we can characterize core normal forms using the following grammar:

Grammar of core normal forms
n = v

| nn′ with n not an almost answer
| n[x�n′] with n′ = L⟨λy.t⟩ and x < aofv(n)
| n[x�n′] with n′ = L⟨y⟩ and x < ofv(n)
| n[x�n′] with n′ = L⟨tu⟩

Proposition 41 (Characterization of core normal forms). Let t be a VSC term. t is→ocore-

normal if and only if it is a n term.

Proof. Direction⇒: by induction on t. Cases:

• Value, i.e. t = v. Then t is a n term.

• Application, i.e. t = ur . By i.h., u and r are n terms. Note that u cannot be an almost
answer, otherwise t would have a root multiplicative redex or an→oeu-redex. Then t is
a n term.

• ES, i.e. t = u[x�r]. By i.h., u and r are n terms. Cases of r:

– r is an answer L⟨λy.r ′⟩. Then x < aofv(u), otherwise there would be a→oeu step.
Then t is a n term.

– r is of the form L⟨y⟩. Then x < ofv(u), otherwise there would be a→oevar step.
Then t is a n term.

– r is of the form L⟨r1r2⟩. Then t is a n term.

Direction⇐: by induction on t. Cases:

• Value, i.e. t = v. Then t is→ocore-normal.

• Application, i.e. t = nn′ with n not an almost answer. By i.h., n and n′ are→ocore-
normal. Thus, the only possible core redex of t must be at the root. Since n is not an
almost answer, there is neither root multiplicative redex nor→oeu-redex. Therefore, t is
→ocore-normal.

• ES, i.e. t = n[x�n′]. By i.h., n and n′ are→ocore-normal. Thus, the only possible core
redexes of t must involve the ES at the root. Cases of n′:

– n′ is an answer L⟨λy.r ′⟩ and x < aofv(n). Then the root ES is not involved in any
→oeu redex (because x < aofv(n)) nor any→oevar redex (because n

′ is not of the
form L′⟨z⟩). Therefore, t is→ocore-normal.

104

– n′ is of the form L⟨y⟩ and x < ofv(n). Then the root ES is not involved in any
→oeu redex (because n

′ is not an answer) nor any→oevar redex (because x < ofv(n)).
Therefore, t is→ocore-normal.

– n′ is of the form L⟨r1r2⟩. Then the root ES is not involved in any→oeu redex
(because n′ is not an answer) nor any→oevar redex (because n

′ is not of the form
L′⟨z⟩). Therefore, t is→ocore-normal.

The preservation of core normal forms is tricky to prove, requiring a few more technical
lemmas.

Note that λoxpos terms can be seen as VSC terms. As a result, ofv and aofv can also
be defined on λoxpos terms. Proposition 42 below relates the sets ofv(t) and ofv(JtK) (resp.
aofv(t) and aofv(JtK)) for any VSC term (resp. n term) t.

Before getting into the statement and the proof of Proposition 42, we need the following
lemma that allows simplifying the inductive steps of the proof of Proposition 42.

Lemma 18.

• ofv(JtuK) = ofv(JtK)∪ ofv(JuK).

• aofv(JtuK) =

aofv(JtK)∪ aofv(JuK)∪ {x} if JtK = E⟨⟨x⟩⟩
aofv(JtK)∪ aofv(JuK) otherwise

• ofv(Jt[x�u]K) =


(ofv(JtK) \ {x})∪ ofv(JuK) if x ∈ ofv(JtK)
ofv(JtK)∪ (ofv(JuK) \ {y}) if x < ofv(JtK) and JuK = E⟨y⟩ with y < ofv(E)
ofv(JtK)∪ ofv(JuK) otherwise

• aofv(Jt[x�u]K) =


aofv(JtK)∪ aofv(JuK) if x < aofv(JtK)
(aofv(JtK) \ {x})∪ aofv(JuK)∪ {y} if x ∈ aofv(JtK) and JuK = E⟨⟨y⟩⟩
(aofv(JtK) \ {x})∪ aofv(JuK) otherwise

Proof. Straightforward by definition (see Figure 6.4).

The following immediate lemma is useful for inspecting different cases in Lemma 18.

Lemma 19. If JtK is of the form E⟨⟨x⟩⟩ then t is of the form L⟨⟨x⟩⟩.

Proof. Straightforward by induction on t.

Proposition 42.

1. For any VSC term t, ofv(JtK) ⊆ ofv(t).

2. For any n term t, aofv(JtK) ⊆ aofv(t).

Proof. 1. By induction on t. Cases:

• t = x. Then ofv(JtK) = {x} = ofv(t).

105

• t = λx.u. Then ofv(JtK) = ofv(y[y�λx.JuK]) = ∅ = ofv(t).
• t = ur . Then by Lemma 18, ofv(JtK) = ofv(JuK)∪ofv(JrK) ⊆

i.h.
ofv(u)∪ofv(r) =

ofv(t).
• t = u[x�r]. Then by Lemma 18, ofv(JtK) ⊆ (ofv(JuK)\{x})∪ofv(JrK) ⊆

i.h.
(ofv(u)\

{x})∪ ofv(r) = ofv(t).

2. By induction on t. Cases:

• t = v. Then aofv(JtK) = ∅ = aofv(t).
• t = nn′ with n not an almost answer. By i.h., aofv(JnK) ⊆ aofv(n) and aofv(Jn′K) ⊆
aofv(n′). Sub-cases:
– n is of the form L⟨⟨x⟩⟩. Then JnK is of the formE⟨⟨x⟩⟩ by Lemma 19. By Lemma 18,

we have aofv(JtK) = aofv(JnK)∪aofv(Jn′K)∪{x} ⊆ aofv(n)∪aofv(n′)∪{x} =
aofv(t).

– Otherwise, JnK is not of the form E⟨⟨x⟩⟩ by Lemma 19. By Lemma 18, we have
aofv(JtK) = aofv(JnK)∪ aofv(Jn′K) ⊆ aofv(n)∪ aofv(n′) = aofv(t).

• t = n[x�n′]. By i.h., aofv(JnK) ⊆ aofv(n) and aofv(Jn′K) ⊆ aofv(n′). Sub-cases:
– n′ = L⟨λy.u⟩ and x < aofv(n). Then x < aofv(JnK) and by Lemma 18, we have
aofv(Jn[x�n′]K) = aofv(JnK)∪ aofv(Jn′K) ⊆ aofv(n)∪ aofv(n′) = aofv(t).

– n′ = L⟨y⟩ and x < ofv(n). Then by Lemma 17, x < aofv(n) ⊇ aofv(JnK)
and by Lemma 18, we have aofv(JtK) = aofv(JnK)∪ aofv(Jn′K) ⊆ aofv(n)∪
aofv(n′) = aofv(t).

– n′ = L⟨t1t2⟩. Let Jn′K = E⟨y⟩. It is clear, by definition, that y is bound in
E. Then by Lemma 18, we have aofv(JtK) = (aofv(JnK) \ {x})∪ aofv(Jn′K) ⊆
(aofv(n) \ {x})∪ aofv(n′) = aofv(t).

Lemma 20. JtK is of the form E⟨E′⟨⟨x⟩⟩[x�λy.u]⟩ if and only if there exists an almost answer t′

such that t→∗oevar t
′
.

Proof. Direction⇒: by induction on t. Cases:

• Variables, i.e. t = z. Trivial because JzK is not in the desired form.

• Abstraction, i.e. t = λy.r . Then JtK is in the desired form and t′ B t satisfies the
statement.

• Application, i.e. t = rq. Then JtK is not in the desired form.

• ESs, i.e. t = r[x�q]. Let JqK = E⟨y⟩. Then JtK = E⟨JrK{x�y}⟩. If JtK is in the desired
form, we have one of the following cases:

– JrK is in the desired form. Then by i.h., r→∗oevar r
′ for some almost answer r ′ . We

have t = r[x�q]→∗oevar r
′[x�q] which is an almost answer.

– JqK is in the desired form and JrK is of the form E′⟨⟨x⟩⟩. By Lemma 19, r is of the
form L⟨⟨x⟩⟩. By i.h., q→∗oevar q

′ for some almost answer q′ . Cases of q′:

106

1. q′ is an answer. Then t = L⟨⟨x⟩⟩[x�q]→∗oevar L⟨⟨x⟩⟩[x�q′] which is an almost
answer.

2. q′ is an almost answer L′⟨L′′⟨⟨z⟩⟩[z�q′′]⟩ with q′′ an answer. Then:
t = L⟨⟨x⟩⟩[x�q]
→∗oevar L⟨⟨x⟩⟩[x�L′⟨L′′⟨⟨z⟩⟩[z�q′′]⟩]
→oevar L′⟨L′′⟨L⟨⟨z⟩⟩[x�z]⟩[z�q′′]⟩

which is an almost answer.

We are now ready to present the following preservation property.

Proposition 43 (Preservation of core normal forms). Let t be a VSC term. If t is→ocore-normal

then JtK is→ox+¬gc-normal.

Proof. By induction on the grammar of t. Cases:

• t = v. Trivial.

• t = nn′ with n not an almost answer. By i.h., JnK and Jn′K are →ox+¬gc-normal. Let
JnK = E⟨x⟩ and Jn′K = E′⟨z⟩. Since n is not an answer, JtK = E⟨E′⟨y[y�xz]⟩⟩. Knowing
that there is no→ox+¬gc-redex within E and E′ , the only possible→ox+¬gc-redex in JtK
would be a→oe+-redex corresponding to the applicative occurrence of x, in the case
where JnK is in the desired form of Lemma 20. This would imply that n is an almost
answer (since it is→ocore-normal), which is not the case.

• t = n[x�n′] with n′ = L⟨λy.u⟩ and x < aofv(n). By i.h., JnK and Jn′K are →ox+¬gc-
normal. Let JLK = (E,σ). Then JtK = E⟨JnK[x�λy.JuKσ]⟩, which is →ox+¬gc-normal
since x < aofv(JnK) by Proposition 42.

• t = n[x�n′] with n′ = L⟨y⟩ and x < ofv(n). By i.h., JnK and Jn′K are→ox+¬gc-normal.
Let JLK = (E,σ). Then JtK = E⟨JnK{x�yσ }⟩, which is→ox+¬gc-normal since x < ofv(JnK)
by Proposition 42.

• t = n[x�n′] with n′ = L⟨tu⟩. This case is straightforward by i.h..

Theorem 15 (Termination equivalence of Core λovsc and λoxpos). Let t be a VSC term.

1. t has a diverging→ocore sequence if and only if JtK has a diverging→ox+ sequence.

2. t is→ocore-weakly normalizing if and only if JtK is→ox+-weakly normalizing.

Proof. We split each of the two statements in its two directions and shuffle the order, since one
of the directions of Point 2 is used to prove one of the directions of Point 1.

1⇒ If t is →ocore-diverging then JtK is →ox+-diverging. If t has an infinite →ocore
reduction sequence d then by local termination (Proposition 35) there is an infinity of
multiplicative steps in d. By the simulation of core sequences (Theorem 14), JtK also has
a diverging reduction sequence.

107

2⇒ If t is →ocore-weakly normalizing then JtK is →ox+-weakly normalizing. If t
has an→ocore reduction sequence d : t→∗ocore u with u →ocore-normal, then by the
simulation of core sequences (Theorem 14) there is a reduction sequence e : JtK→∗ox+ JuK.
By Proposition 43, JuK is→ox+¬gc-normal. Since→ogc+ is strongly normalizing (by local
termination Proposition 32), JuK→∗ogc+ r with r →ox+-normal.

1⇐ If JtK is→ox+-diverging then t is→ocore-diverging. If t is→ocore weakly normalizing
then, by direction 2⇒, JtK is→ox+ weakly normalizing, which is absurd because→ox+ is
diamond (Theorem 11) and thus uniformly normalizing. Then t is→ocore diverging.

2⇐ If JtK is→ox+-weakly normalizing then t is→ocore-weakly normalizing. If t has a
diverging→ocore sequence then, by direction 1⇒, JtK has a diverging→ox+ sequence,
which is absurd because→ox+ is diamond (Theorem 11) and thus uniformly normalizing.
Then t has no diverging→ocore sequences, i.e. it is strongly normalizing.

Thanks to the translation, we can prove uniform normalization (see Section 2.1) for
λovsc and Core λovsc. For λoxpos, uniform normalization is an immediate consequence of the
diamond property (Theorem 11). For λovsc and Core λovsc, proving uniform normalization is
not immediate, as neither of these calculi is diamond, but it suffices to lift the one of λoxpos via
termination equivalences.

Corollary 4. λovsc and Core λovsc are uniformly normalizing.

6.7 Concluding remarks
We have established a translation from λovsc to λoxpos that preserves the number of multi-
plicative steps, a reasonable cost model, that is, an appropriate measure of the time complexity
of λovsc. Despite having a rather restricted syntax, the positive λ-calculus captures the essence
of useful sharing thanks to its compactness.

We expect the positive λ-calculus to be a sharp tool deserving to be studied further and
playing an intermediate role between calculi and implementations, in particular with respect
to program transformations and optimizations.

A task that we leave for future work is to efficiently implement meta-level variable renam-
ings required in the multiplicative rule of λoxpos, which can be computationally costly if done
without care. We expect it to be doable with an appropriate abstract machine.

108

Part IV

Back to proofs, linearly

109

Chapter 7

Extending LJF⊃ with linearity

In this chapter, we show how a notion of linearity can be used to extend LJF⊃ and eventually
incorporated into our approach to term representation. In Section 7.1, we start by presenting
an unfocused proof system ILL⊃,⊸ for a fragment of intuitionistic linear logic given by Miller
[Mil], and then propose a focused version ILLF⊃,⊸. We then present the cut rules of ILLF⊃,⊸
and give a cut-elimination procedure (in the same style as the one presented in Section 1.4) in
Section 7.4. Soundness and completeness proofs for ILLF⊃,⊸ follow in Section 7.5. In the end,
we describe briefly how our approach to term representation can be adapted to this focused
proof system in Section 7.6.

7.1 Unfocused proof system ILL⊃,⊸

In this section, we present an unfocused proof system ILL⊃,⊸ (Figure 7.1) for a fragment of
intuitionistic linear logic given by Miller [Mil]. Extending LJ⊃, formulas can be built with
linear implication⊸, in addition to atomic formulas and intuitionistic implication ⊃.

Every formula can be translated into a formula in intuitionistic linear logic, via the transla-
tion (·)∗ based on Girard’s translation from intuitionistic logic into linear logic [Gir87]:

α∗ = α (B1 ⊃ B2)
∗ =!B∗1⊸ B∗2 (B1⊸ B2)

∗ = B∗1⊸ B∗2

Despite capturing a fragment of intuitionistic linear logic, ILL⊃,⊸ has a different form of
sequents from the usual two-sided LL sequents since we do not have ! as a primitive connective.
An ILL⊃,⊸ sequent is of the form Γ ;∆ ⊢ B of which the L.H.S. is split in two zones, namely
the unrestricted zone Γ and the linear zone ∆.

Proposition 44. If Γ ;∆ ⊢ B is provable in ILL⊃,⊸, then !Γ ∗,∆∗ ⊢ B∗ is provable in ILL.

Proof. Straightforward by induction on ILL⊃,⊸ rules.

In [Mil], the proof system ILL⊃,⊸ is used as an intermediate step towards the focused
proof sysem ILLF−⊃,⊸ (Figure 7.2), itself can be seen as a restriction of another larger system
Forum [Mil96] for full linear logic. A crucial feature of these focused proof systems is that
they only include negative logical connectives and that atoms are always treated as if they
are negative, making these systems fully negative (all the logical connectives are negative).
A natural question then arises: can we come up with a focused proof system, capturing the
same fragment of intuitionistic linear logic, but having both positive and negative atoms this

111

'

&

$

%

I
Γ ;B ⊢ B

Γ ,B;∆,B ⊢ C
absorb

Γ ,B;∆ ⊢ C

Γ ; · ⊢ B1 Γ ;∆,B2 ⊢ C ⊃ L
Γ ;∆,B1 ⊃ B2 ⊢ C

Γ ;∆1 ⊢ B1 Γ ;∆2,B2 ⊢ C
⊸ L

Γ ;∆1,∆2,B1⊸ B2 ⊢ C

Γ ,B1;∆ ⊢ B2 ⊃ R
Γ ;∆ ⊢ B1 ⊃ B2

Γ ;∆,B1 ⊢ B2
⊸ R

Γ ;∆ ⊢ B1⊸ B2

Figure 7.1: The unfocused proof system ILL⊃,⊸.

time? The answer is yes, leading us to the focused proof system ILLF⊃,⊸ presented in the next
section. '

&

$

%

Identity and structural rules

Il
Γ ; ·⇓α ⊢ α

Γ ,N ;∆⇓N ⊢ α
Dl

Γ ,N ;∆ ⊢ α
Γ ;∆⇓N ⊢ α

D⊸l
Γ ;∆,N ⊢ α

⇓-phase

Γ ; · ⊢ B1 Γ ;∆⇓B2 ⊢ α ⊃ L
Γ ;∆⇓B1 ⊃ B2 ⊢ α

Γ ;∆1 ⊢ B1 Γ ;∆2⇓B2 ⊢ α
⊸ L

Γ ;∆1,∆2⇓B1⊸ B2 ⊢ α

⇑-phase

Γ ,B1;∆ ⊢ B2 ⊃ R
Γ ;∆ ⊢ B1 ⊃ B2

Γ ;∆,B1 ⊢ B2
⊸ R

Γ ;∆ ⊢ B1⊸ B2

Figure 7.2: The focused proof system ILLF−⊃,⊸.

7.2 Focused proof system ILLF⊃,⊸

In this section, we develop a focused proof system ILLF⊃,⊸ that captures exactly the same
fragment of intuitionistic linear logic as ILL⊃,⊸ and includes positive and negative atoms.

112

We first present a "naive" proposal ILLF−+⊃,⊸ of such a system. In ILLF
−+
⊃,⊸, as in LJF⊃,

formulas are polarized, with intuitionistic and linear implications negative, and atoms either
positive or negative. ILLF−+⊃,⊸ has the following four kinds of sequents:

1. Border sequents Γ ;∆ ⊢ α.

2. ⇑-sequents Γ ;∆ ⊢ B⇑ .

3. Left ⇓-sequents Γ ;∆⇓B ⊢ α.

4. Right ⇓-sequents Γ ;∆ ⊢ B⇓ .

As in ILL⊃,⊸, the L.H.S. of a sequent is split into an unrestricted zone Γ and a linear zone∆. As
in LJF⊃, there is a release rule Rl that adds an additional positive atom into the L.H.S., and this
additional atom is the reason why sharing is present in LJF⊃ proofs (and their corresponding
terms). However, in ILLF−+⊃,⊸, this additional positive atom is put into the linear zone, which
unfortunately prevents us from exploring any possible sharing via naming/explicit substitutions
when considering terms. Intuitively, if we consider terms corresponding to cut-free ILLF−+⊃,⊸
proofs, whenever we have t[x�p], x must appear exactly once in t.

In order to explore the possibility of sharing within a proof, we have to come up with a
proof system that is more sensitive to "unrestricted resource".

Now let us try to interpret the decide rulesDl andD⊸l rules using the terminology of linear
logic. Essentially, a formula under focus corresponds to exactly one copy of that formula. As
a result, Dl corresponds to a contraction and a dereliction while D⊸l is mapped into "identity".
The problem with ILLF

−+
⊃,⊸ is that once a formula is put under focus using a decide rule, we

completely forget if we have only one copy or infinitely many copies on the L.H.S.. To solve
this issue, we have to refine left ⇓-sequents, by classifying them into two different kinds: the
unrestricted ones Γ ;∆⇓!B ⊢ α and the linear ones Γ ;∆⇓⊸B ⊢ α. This observation leads us to
consider the focused proof system ILLF⊃,⊸, whose inference rules can be found in Figure 7.4.

Intuitively, Γ ;∆⇓!B ⊢ α guarantees that there are infinitely many copies of B (or there is !B
using the terminology of linear logic) on the L.H.S., while Γ ;∆⇓⊸B ⊢ α indicates that there
is one copy of B on the L.H.S.

Let us now explain the main differences between ILLF⊃,⊸ and ILLF−+⊃,⊸.
The first difference is that there are two left release rules in ILLF⊃,⊸, namely Rl and R⊸l ,

corresponding to the two kinds of left focused sequents, respectively. When we apply release to
an unrestricted left focused sequent Γ ;∆⇓!β ⊢ α, the (positive) atomic formula β is added into
the unrestricted zone, and when we apply release to a linear left focused sequent Γ ;∆⇓⊸β ⊢ α,
β is added into the linear zone, which is exactly compatible with our interpretation of sequents
mentioned above.

The second difference, probably the most subtle one, is that there are two left introduction
rules for⊸:

Γ ; · ⊢ B1⇓ Γ ;∆⇓∗B2 ⊢ α
⊸ L1

Γ ;∆⇓∗B1⊸ B2 ⊢ α
Γ ;∆1 ⊢ B1⇓ Γ ;∆2⇓⊸B2 ⊢ α(∆1 , ·) ⊸ L2

Γ ;∆1,∆2⇓∗B1⊸ B2 ⊢ α

where ⇓∗ denotes either ⇓! or ⇓⊸. The most interesting case is the unrestricted case of⊸ L1:

Γ ; · ⊢ B1⇓ Γ ;∆⇓!B2 ⊢ α
⊸ L1

Γ ;∆⇓!B1⊸ B2 ⊢ α

113

'

&

$

%

Identity and structural rules

α is positive
Ir

Γ ,α; · ⊢ α⇓
α is positive

I⊸r
Γ ;α ⊢ α⇓

α is negative
Il

Γ ; ·⇓α ⊢ α

Γ ,N ;∆⇓N ⊢ α
Dl

Γ ,N ;∆ ⊢ α
Γ ;∆⇓N ⊢ α

D⊸l
Γ ;∆,N ⊢ α

Γ ;∆ ⊢ P ⇓
Dr

Γ ;∆ ⊢ P

⇓-phase

Γ ; · ⊢ B1⇓ Γ ;∆⇓B2 ⊢ α ⊃ L
Γ ;∆⇓B1 ⊃ B2 ⊢ α

Γ ;∆1 ⊢ B1⇓ Γ ;∆2⇓B2 ⊢ α
⊸ L

Γ ;∆1,∆2⇓B1⊸ B2 ⊢ α

Release

Γ ;∆,β ⊢ α
Rl

Γ ;∆⇓β ⊢ α
Γ ;∆ ⊢N ⇑

Rr
Γ ;∆ ⊢N ⇓

⇑-phase

Γ ;∆ ⊢ α
Sr

Γ ;∆ ⊢ α⇑
Γ ,B1;∆ ⊢ B2⇑ ⊃ R
Γ ;∆ ⊢ B1 ⊃ B2⇑

Γ ;∆,B1 ⊢ B2⇑
⊸ R

Γ ;∆ ⊢ B1⊸ B2⇑

Figure 7.3: The focused proof system ILLF
−+
⊃,⊸.

The intuition behind this rule is based on the tautology !(B1⊸ B2)⊸ !B1⊸ !B2 and the
promotion in linear logic. Indeed, by translating these sequents into two-sided LL sequents,
the rule is translated into:

!Γ ∗ ⊢ B∗1 !Γ ∗,∆∗, !B∗2 ⊢ α

!Γ ∗,∆∗, !(B∗1⊸ B∗2) ⊢ α
which can be justified by the ILL derivation:

Π
!(B1⊸ B2)∗ ⊢!B∗1⊸!B∗2

!Γ ∗ ⊢ B∗1
p

!Γ ∗ ⊢!B∗1 !Γ ∗,∆∗, !B∗2 ⊢ α
⊸ L

!Γ ∗, !Γ ∗,∆∗, !B∗1⊸!B∗2 ⊢ α
c∗

!Γ ∗,∆∗, !B∗1⊸!B∗2 ⊢ α
cut

!Γ ∗,∆∗, !(B∗1⊸ B∗2) ⊢ α
The following propositions are classic and their proofs are straightforward.

Proposition 45 (Weakening). If an ILLF⊃,⊸ sequent S has an ILLF⊃,⊸ proof, then any sequent

obtained from S by extending its unrestricted zone has an ILLF⊃,⊸ proof.

114

'

&

$

%

Identity and structural rules

α is positive
Ir

Γ ,α; · ⊢ α⇓
α is positive

I⊸r
Γ ;α ⊢ α⇓

α is negative
Il

Γ ; ·⇓∗α ⊢ α

Γ ,N ;∆⇓!N ⊢ α
Dl

Γ ,N ;∆ ⊢ α
Γ ;∆⇓⊸N ⊢ α

D⊸l
Γ ;∆,N ⊢ α

Γ ;∆ ⊢ P ⇓
Dr

Γ ;∆ ⊢ P

⇓-phase

Γ ; · ⊢ B1⇓ Γ ;∆⇓∗B2 ⊢ α ⊃ L
Γ ;∆⇓∗B1 ⊃ B2 ⊢ α

Γ ; · ⊢ B1⇓ Γ ;∆⇓∗B2 ⊢ α
⊸ L1

Γ ;∆⇓∗B1⊸ B2 ⊢ α
Γ ;∆1 ⊢ B1⇓ Γ ;∆2⇓⊸B2 ⊢ α(∆1 , ·) ⊸ L2

Γ ;∆1,∆2⇓∗B1⊸ B2 ⊢ α

Release

Γ ,β;∆ ⊢ α
Rl

Γ ;∆⇓!β ⊢ α

Γ ;∆,β ⊢ α
R⊸l

Γ ;∆⇓⊸β ⊢ α
Γ ;∆ ⊢N ⇑

Rr
Γ ;∆ ⊢N ⇓

⇑-phase

Γ ;∆ ⊢ α
Sr

Γ ;∆ ⊢ α⇑
Γ ,B1;∆ ⊢ B2⇑ ⊃ R
Γ ;∆ ⊢ B1 ⊃ B2⇑

Γ ;∆,B1 ⊢ B2⇑
⊸ R

Γ ;∆ ⊢ B1⊸ B2⇑

Figure 7.4: The focused proof system ILLF⊃,⊸.

Proof. Straightforward by induction on the ILLF⊃,⊸ proof.

Proposition 46 (Strengthening). Let S be an ILLF⊃,⊸ sequent provable in ILLF⊃,⊸ and B be

a formula in its unrestricted zone. Let S ′ be the sequent obtained from S by removing B from it.

Then:

• If B is positive and is never used to match the R.H.S. in an Ir rule, then S ′ is provable in
ILLF⊃,⊸.

• If B is negative and is never used as the main formula in a Dl rule, then S ′ is provable in
ILLF⊃,⊸.

Proof. Straightforward by induction on an ILLF⊃,⊸ proof of S .

115

7.3 Phases and synthetic inference rules
In this section, we describe the two kinds of phases (⇑-phases and ⇓-phases) in ILLF⊃,⊸, which
eventurally leads us to the definition of synthetic inference rules.

As we mentioned earlier in Chapter 1, each (negative) formula has a unique left synthetic
inference rule in LJF⊃. It is however not the case for ILLF⊃,⊸ as the ILLF⊃,⊸ inference rules
are not all deterministic from conclusion to premises: there is non-determinism in choosing
between⊸ L1 and⊸ L2.

By using the equivalence B⊸ C ⊃D ≡ C ⊃ B⊸D as a rewrite rule, it is clear that every
formula B admits a (unique) normal form of the following form:

C1 ⊃ · · · ⊃ Cm ⊃ B1⊸ · · ·⊸ Bn⊸ α

In this case, we write B ↑ C1 ⊃ · · · ⊃ Cm ⊃ B1 ⊸ · · · ⊸ Bn ⊸ α. We define the border
sequent associated with B as the sequent C1, . . . ,Cm;B1, . . . ,Bn ⊢ α.

Lemma 21. If B ↑ C1 ⊃ · · · ⊃ Cm ⊃ B1⊸ · · ·⊸ Bn⊸ α, then for all B′ , we have:

• B′ ⊃ B ↑ B′ ⊃ C1 ⊃ · · · ⊃ Cm ⊃ B1⊸ · · ·⊸ Bn⊸ α, and

• B′⊸ B ↑ C1 ⊃ · · · ⊃ Cm ⊃ B′⊸ B1⊸ · · ·⊸ Bn⊸ α.

Proposition 47. Let S be the sequent Γ ;∆ ⊢ B⇑ . Then the ⇑-phase of S can be written as

Γ ,Γ ′;∆,∆′ ⊢ α′

Γ ;∆ ⊢ B⇑

where Γ ′;∆′ ⊢ α′ is the border sequent associated with B.

Proof. Straightforward by induction on B.

Proposition 48. Let S be the sequent Γ ;∆⇓⊸B ⊢ α. Then any possible ⇓-phase of S can be

written as

{Γ ; · ⊢ Ci ⇓}Ci∈Γ ′
{
Γ ;∆j ⊢Dj ⇓

}
Dj∈∆′

Γ ;Θ⇓⊸β ⊢ α

Γ ;∆⇓⊸B ⊢ α
where Γ ′;∆′ ⊢ β is the border sequent associated with B and we have

⊎
j∆j ⊎Θ = ∆.

Proof. By induction on B. Cases of B:

• B is atomic. Trivial.

• B = B1 ⊃ B2. Then the left-introduction phase ends with ⊃ L rule and by i.h., we have:

Γ ; · ⊢ B1⇓

{Γ ; · ⊢ Ci ⇓}Ci∈Γ ′
{
Γ ;∆j ⊢Dj ⇓

}
Dj∈∆′

Γ ;Θ⇓⊸β ⊢ α

Γ ;∆⇓⊸B2 ⊢ α ⊃ L
Γ ;∆⇓⊸B1 ⊃ B2 ⊢ α

where Γ ′;∆′ ⊢ β is the border sequent associated with B2 and we have
⊎

j∆j ⊎Θ = ∆.
Then we can conclude by Lemma 21.

116

• B = B1⊸ B2. Similar to the previous case.

Proposition 49. Let S be the sequent Γ ;∆⇓!B ⊢ α. Then the left-introduction phase of S can be

written as

{Γ ; · ⊢ Ci ⇓}Ci∈Γ ′
{
Γ ;∆j ⊢Dj ⇓

}
Dj∈∆′

Γ ;Θ⇓all-empty({∆j})β ⊢ α

Γ ;∆⇓!B ⊢ α

where Γ ′;∆′ ⊢ β is the border sequent associated to B, we have
⊎

j∆j ⊎Θ = ∆, and

all-empty({∆j}) =
{
! if ∆j are all empty

⊸ otherwise

Proof. By induction on B. Cases of B:

• B is atomic. Trivial.

• B = B1 ⊃ B2. Then the left-introduction phase ends with ⊃ L rule and by i.h., we have:

Γ ; · ⊢ B1⇓

{Γ ; · ⊢ Ci ⇓}Ci∈Γ ′
{
Γ ;∆j ⊢Dj ⇓

}
Dj∈∆′

Γ ;Θ⇓all-empty({∆j })β ⊢ α

Γ ;∆⇓!B2 ⊢ α ⊃ L
Γ ;∆⇓!B1 ⊃ B2 ⊢ α

where Γ ′;∆′ ⊢ β is the border sequent associated with B2 and we have
⊎

j∆j ⊎Θ = ∆.
We can then conclude by Lemma 21.

• B = B1⊸ B2. Cases of the last rule:

– ⊸ L1. Then by i.h., we have:

Γ ; · ⊢ B1⇓

{Γ ; · ⊢ Ci ⇓}Ci∈Γ ′
{
Γ ;∆j ⊢Dj ⇓

}
Dj∈∆′

Γ ;Θ⇓all-empty({∆j })β ⊢ α

Γ ;∆⇓!B2 ⊢ α
⊸ L1

Γ ;∆⇓!B1⊸ B2 ⊢ α

We can then conclude as in the previous case.
– ⊸ L2. Then by Proposition 48, we have:

Γ ;∆1 ⊢ B1⇓

{Γ ; · ⊢ Ci ⇓}Ci∈Γ ′
{
Γ ;∆′j ⊢Dj ⇓

}
Dj∈∆′

Γ ;Θ⇓⊸β ⊢ α

Γ ;∆2⇓⊸B2 ⊢ α
⊸ L2

Γ ;∆1,∆2⇓!B1⊸ B2 ⊢ α

We can then conclude by Lemma 21 since all-empty({∆′j} ∪ {∆1}) =⊸

117

Synthetic inference rules. ILLF⊃,⊸ and LJF⊃ inference rules have a quite similar structure.
In particular, if Γ ∪ {B} contains only formulas built with atomic formulas and intuitionistic
implications, then any ILLF⊃,⊸ proof of Γ ; · ⊢ B⇑ can be seen as an LJF⊃ proof of Γ ⊢ B⇑ , and
vice versa. As a result, one would expect synthetic inference rules in ILLF⊃,⊸ to be defined
in exactly the same way as in LJF⊃. However, it is more complicated due to the two left
introduction rules of⊸.

Let us consider the following two ILLF⊃,⊸ derivations:

I⊸r
α⊸ β;α ⊢ α⇓

α⊸ β;β ⊢ γ
R⊸lα⊸ β; ·⇓⊸β ⊢ γ
⊸ L2

α⊸ β;α⇓!α⊸ β ⊢ γ
Dl

α⊸ β;α ⊢ γ

Ir
α⊸ β,α; · ⊢ α⇓

α⊸ β,α,β; · ⊢ γ
Rl

α⊸ β,α; ·⇓!β ⊢ γ
⊸ L1

α⊸ β,α; ·⇓!α⊸ β ⊢ γ
Dl

α⊸ β,α; · ⊢ γ

where α and β are both positive.
Both derivations should correspond to a synthetic inference rule of α⊸ β. Comparing the

conclusions and the endsequents of these derivations, the additional atomic formula β is added
to the linear zone and the unrestricted zone, respectively. This suggests that these derivations
should correspond to different synthetic inference rules of α⊸ β.

As in Definition 6, the form of a synthetic inference rule for a negative formula N also
depends on the polarity of its target targ(N). Since synthetic inference rules are much more
complicated in ILLF⊃,⊸, we first describe the case where targ(N) is negative.

Definition 32. Let N be a negative formula such that β = targ(N) is negative. A synthetic
inference rule for N is an inference rule of the form

Γ ,N ,Γ1;∆′1,∆1 ⊢ α1 · · · Γ ,N ,Γn;∆′n,∆n ⊢ αn{β1, . . . ,βm} ⊑ Γ ,α = β,∆′ =
⊎

1≤k≤n∆
′
k

Γ ,N ;∆,∆′ ⊢ α
justified by an ILLF⊃,⊸ derivation of the form

N ; · ⊢ β1⇓ · · · N ; · ⊢ βm⇓ N ;βm+1 ⊢ βm+1⇓ · · · N ;βl ⊢ βl ⇓ N,Γ1;∆1 ⊢ α1 · · · N,Γn;∆n ⊢ αn N ; ·⇓∗ β ⊢ α
.
.
.
.
.
Π

N ;∆⇓!N ⊢ α
Dl

N ;∆ ⊢ α

where

1. InΠ, there is no ⇓-sequent above an ⇑-sequent.

2. For all 1 ≤ j ≤ l, βj is positive.

3. β is negative.

4. ∆ is the multiset {βm+1, . . . ,βl}.

Note that ⇓∗ in the last endsequent is ⇓! if and only if ∆ is empty.

Here, there is an additional condition ∆′ =
⊎

1≤k≤n∆
′
k in the synthetic inference rule, as

both⊸ and ⊃ aremultiplicative.
The case where targ(N) is positive is even trickier, as illustrated earlier with the two

ILLF⊃,⊸ derivations corresponding to different synthetic inference rules of the same formula.

118

Definition 33. Let N be a negative formula such that β = targ(N) is positive. A linear
synthetic inference rule for N is an inference rule of the form

Γ ,N ,Γ1;∆′1,∆1 ⊢ α1 · · · Γ ,N ,Γn;∆′n,∆n ⊢ αn Γ ,N ;∆′n+1,β ⊢ α
{β1, . . . ,βm} ⊑ Γ ,∆′ =

⊎
1≤k≤n+1∆

′
k ,∆⊎

⊎
1≤k≤n∆

′
k , ·

Γ ,N ;∆,∆′ ⊢ α

justified by an ILLF⊃,⊸ derivation of the form

N ; · ⊢ β1⇓ · · · N ; · ⊢ βm⇓
I⊸r

N ;βm+1 ⊢ βm+1⇓ · · ·
I⊸r

N ;βl ⊢ βl ⇓ N,Γ1;∆1 ⊢ α1 · · · N,Γn;∆n ⊢ αn

N ;β ⊢ α
R⊸
l

N ; ·⇓⊸ β ⊢ α
.
.
.
.
.
Π

N ;∆⇓!N ⊢ α
Dl

N ;∆ ⊢ α

where

1. InΠ, there is no ⇓-sequent above an ⇑-sequent.

2. For all 1 ≤ j ≤ l, βj is positive.

3. ∆ is the multiset {βm+1, . . . ,βl}.

Note that there is yet another additional condition ∆ ⊎
⊎

1≤k≤n∆
′
k , · in the synthetic

inference rule. Intuitively, if one wants to switch from an unrestricted left ⇓-sequent to a
linear left ⇓-sequent, there must be a⊸ L2 at some point, which implies the existence of an
endsequent with a non-empty linear zone.

Definition 34. Let N be a negative formula such that β = targ(N) is positive. A non-linear
synthetic inference rule for N is an inference rule of the form

Γ ,N ,Γ1;∆1 ⊢ α1 · · · Γ ,N ,Γn;∆n ⊢ αn Γ ,N ,β;∆′ ⊢ α
{β1, . . . ,βm} ⊑ Γ

Γ ,N ;∆′ ⊢ α

justified by an ILLF⊃,⊸ derivation of the form

N ; · ⊢ β1⇓ · · · N ; · ⊢ βm⇓ N,Γ1;∆1 ⊢ α1 · · · N,Γn;∆n ⊢ αn

N,β; · ⊢ α
Rl

N ; ·⇓!β ⊢ α
.
.
.
.
.
Π

N ; ·⇓!N ⊢ α
Dl

N ; · ⊢ α

where

1. InΠ, there is no ⇓-sequent above an ⇑-sequent.

2. For all 1 ≤ j ≤m, βj is positive.

119

With these definitions, we can now describe synthetic inference rules that correspond to
the two ILLF⊃,⊸ derivations presented earlier.

Consider the formulaN = α⊸ β where α and β are both positive. The ILLF⊃,⊸ derivation

I⊸r
N ;α ⊢ α⇓

N ;β ⊢ γ
R⊸lN ; ·⇓⊸β ⊢ γ
⊸ L2

N ;α⇓!α⊸ β ⊢ γ
Dl

N ;α ⊢ γ

gives the following linear synthetic inference rule:

Γ ,N ;∆,β ⊢ γ
Γ ,N ;∆,α ⊢ γ

And the ILLF⊃,⊸ derivation:

N ; · ⊢ α⇓

N,β; · ⊢ γ
Rl

N ; ·⇓!β ⊢ γ
⊸ L1

N ; ·⇓!α⊸ β ⊢ γ
Dl

N ; · ⊢ γ

gives the following non-linear synthetic inference rule:

Γ ,N ,β;∆ ⊢ γ
{α} ⊑ Γ

Γ ,N ;∆ ⊢ γ

Remark 12. Careful readers might notice that there are two decide rules in ILLF⊃,⊸, namely

Dl and D
⊸
l . Indeed, there should normally be another variant of synthetic inference rules where

we use D⊸l instead Dl . We ignore the details here, as the definition is similar and standard, and

the non-linear case does not appear.

Now any proof of a border sequent can be seen as built with synthetic inference rules (with
right synthetic inference rules for positive atoms defined in exactly the same way as in LJF⊃).

7.4 Cut-elimination
In this section, we describe a cut-elimination procedure similar to the one proposed in Section 1.4.
We have the following four cut rules to consider:

Γ ;∆1 ⊢ B⇑ Γ ;∆2,B ⊢ C⇑
cut

Γ ;∆1,∆2 ⊢ C⇑
Γ ; · ⊢ B⇑ Γ ,B;∆ ⊢ C⇑

cut!
Γ ;∆ ⊢ C⇑

Γ ;∆1 ⊢N⇑ Γ ;∆2⇓⊸N ⊢ α
cutk

Γ ;∆1,∆2 ⊢ α
Γ ; · ⊢N⇑ Γ ;∆⇓!N ⊢ α

cutk!
Γ ;∆ ⊢ α

where B⇑ denotes B ⇑ or B (in this case, B = α for some α).

120

Eliminating cut. Let Π be an ILLF⊃,⊸ proof of the form
Π1

Γ ;∆1 ⊢ B⇑
Π2

Γ ;∆2,B ⊢ C⇑
cut

Γ ;∆1,∆2 ⊢ C⇑

where Π1 areΠ2 are both cut-free.
First, the cut can be pushed to the right branch and over the whole right-introduction

phase of Π2. As a result, we can simply assume that C⇑ = α.
We now distinguish two cases:
1. B⇑ is positive. That is, B⇑ = β or B⇑ = β ⇑ for some β positive. It is clear that we only

need to consider the case where B⇑ = β. Π1 is a proof of a border sequent: it can be seen
as a proof built with synthetic inference rules. By the structure of synthetic inference
rules (see Definition 33 and Definition 34), the occurrence of cut can be permuted up
through all the synthetic inference rules, until the application of the Dr rule on β. We
have then:

· · ·

I ∗r
Γ ′;∆′1 ⊢ β⇓

Dr
Γ ′;∆′1 ⊢ β

Π′2
Γ ′;∆2,β ⊢ α

cut
Γ ′;∆′1,∆2 ⊢ α

Γ ;∆1,∆2 ⊢ α
where I ∗r is either Ir or I⊸r , and Π′2 is obtained from Π2 by weakening. Now consider
the sub-proof Π′2. The occurrence of β is involved in exactly one application of the I⊸r
rule. Two cases:

(a) I ∗r = Ir . Then β ∈ Γ ′ and ∆′1 = ·. We have then a proof Π′′2 of Γ ′;∆2 ⊢ α obtained
fromΠ′2 by replacing the one I⊸r rule involving β with an Ir rule matching with
the occurrence of β in Γ ′ . Then:

· · ·
Π′′2

Γ ′;∆′1,∆2 ⊢ α

Γ ;∆1,∆2 ⊢ α

(b) I ∗r = I⊸r . Then ∆′1 = β, and we have:

· · ·
Π′2

Γ ′;∆′1,∆2 ⊢ α

Γ ;∆1,∆2 ⊢ α

2. B⇑ is negative. That is, B⇑ = B ⇑ with B negative or B⇑ = β with β negative. Consider
the right sub-proofΠ2. The occurrence of B is involved in exactly one application of
the D⊸l rule, which means thatΠ2 is in the form

· · ·

Π′2
Γ ′;∆′2⇓⊸B ⊢ α′

D⊸l
Γ ′;∆′2,B ⊢ α′

Γ ;∆2,B ⊢ α

121

We have then:

· · ·

Π′1
Γ ′;∆1 ⊢ B⇑

Π′2
Γ ′;∆′2⇓⊸B ⊢ α′

cutk
Γ ′;∆1,∆

′
2 ⊢ α′

Γ ;∆1,∆2 ⊢ α

Eliminating cut!. Let Π be an ILLF⊃,⊸ proof of the form

Π1

Γ ; · ⊢ B⇑
Π2

Γ ,B;∆ ⊢ C⇑
cut!

Γ ;∆ ⊢ C⇑

whereΠ1 areΠ2 are both cut-free.
Similarly, we assume that C⇑ = α. We now distinguish two cases:

1. B⇑ is positive, that is, B⇑ = β or B⇑ = β ⇑ for some β positive. Like in the case of cut,
the occurrence of cut! can be permuted up through all the synthetic inference rules of
Π1, until the application of the Dr rule on β. We have then:

· · ·

I ∗r
Γ ′;∆′ ⊢ β⇓

Dr
Γ ′;∆′ ⊢ β

Π′2
Γ ′,β;∆ ⊢ α

cut!
Γ ′;∆,∆′ ⊢ α

Γ ;∆ ⊢ α

(7.1)

where I ∗r is either Ir or I⊸r . We now show that ∆′ must be empty. First note thatΠ1 is of
the form

· · ·

I ∗r
Γ ′;∆′ ⊢ β⇓

Dr
Γ ′;∆′ ⊢ β

Γ ; · ⊢ β

where the · · · part and the derivation left implicit are exactly the ones in (7.1), and
they correspond to synthetic inference rules. By definitions of synthetic inference rules
(Definition 33 and Definition 34), if we compare the right-most premise and the conclusion
of a synthetic inference rule, an additional positive atom is added to the linear zone
only when the synthetic inference rule is linear and in this case, the linear zone of the
conclusion must be non-empty itself. In other words, from a border sequent with empty
linear zone, applying synthetic inference rules never increases the linear zone. As a result,
∆′ is empty, and we have I ∗r = Ir with β ∈ Γ ′ . By replacing accordingly the instances of
Ir on β inΠ′2 and by strengthening (Proposition 46), we obtain the proof

· · ·
Π′′2

Γ ′;∆ ⊢ α
Γ ;∆ ⊢ α

122

2. B⇑ is negative, that is, B⇑ = B ⇑ with B negative or B⇑ = β with β negative. Consider
the right sub-proofΠ2 and all the applications of the Dl rule on B. Looking at such an
application of Dl ,

· · ·

Π′2
Γ ′,B;∆′ ⇓!B ⊢ α′

Dl
Γ ′,B;∆′ ⊢ α′

Γ ,B;∆ ⊢ α
We can replace the Dl rule with a cutk! rule.

· · ·

Π′1
Γ ′,B; · ⊢ B⇑

Π′2
Γ ′,B;∆′ ⇓!B ⊢ α′

cutk!
Γ ′,B;∆′ ⊢ α′

Γ ,B;∆ ⊢ α

where Π′1 is obtained by Π1 by weakening. By repeating this step, we obtain a proof of
Γ ,B;∆ ⊢ α containing no application ofDl onB. Thanks to strengthening (Proposition 46),
we obtain a proof (with some cutk!) of Γ ;∆ ⊢ α.

Eliminating cutk . Let Π be an ILLF⊃,⊸ proof of the form

Π1
Γ ;∆1 ⊢ B⇑

Π2
Γ ;∆2⇓⊸B ⊢ α

cutk
Γ ;∆1,∆2 ⊢ α

where Π1 andΠ2 are both cut-free.
By Proposition 48,Π2 is of the form{

Ξi

Γ ; · ⊢ Ci ⇓

}
Ci∈Γ ′

{
Ξ′j

Γ ;Θj ⊢Dj ⇓

}
Dj∈∆′

Π′2
Γ ;Θ⇓⊸β ⊢ α

Γ ;∆2⇓⊸B ⊢ α

where Γ ′;∆′ ⊢ β is the border sequent associated with B, and we have
⊎

jΘj ⊎Θ = ∆2.
By Proposition 47,Π1 is of the form

Π′1
Γ ,Γ ′;∆1,∆

′ ⊢ β

Γ ;∆1 ⊢ B⇑

sub-proof associated to itΠ′1. We distinguish two cases following the polarity of β:

• β is positive. ThenΠ′2 is of the form

Π′′2
Γ ;Θ,β ⊢ α

R⊸l
Γ ;Θ⇓⊸β ⊢ α

123

We can then introduce cuts between the sub-proofs Ξi , Ξ′j , Π
′
1, and Π′′2 , illustrated as

follows:{
Ξi

Γ ; · ⊢ Ci ⇓

}
Ci∈Γ ′

{
Ξ′j

Γ ;Θj ⊢Dj ⇓

}
Dj∈∆′

Π′1
Γ ,Γ ′;∆1,∆

′ ⊢ β
cut∗⇓, cut

∗
!⇓

Γ ;∆1,
⊎

jΘj ⊢ β
Π′′2

Γ ;Θ,β ⊢ α
cut

Γ ;∆1,∆2 ⊢ α

where cut∗⇓ and cut∗!⇓ denote a number of applications of the intermediate cut rules
cut⇓ and cut! (with some necessary weakening to match the unrestricted zones).

• β is negative. ThenΠ′2 is of the form

Il
Γ ;Θ⇓⊸β ⊢ α

with Θ = · and α = β. We have{
Ξi

Γ ; · ⊢ Ci ⇓

}
Ci∈Γ ′

{
Ξ′j

Γ ;Θj ⊢Dj ⇓

}
Dj∈∆′

Π′1
Γ ,Γ ′;∆1,∆

′ ⊢ β
cut∗⇓, cut

∗
!⇓

Γ ;∆1,
⊎

jΘj ⊢ β

Note that
⊎

jΘj =
⊎

jΘj ⊎Θ = ∆2.

Now we give the definition of the two intermediate cut rules:

Γ ;∆1 ⊢ B⇓ Γ ;∆2,B ⊢ C
cut⇓

Γ ;∆1,∆2 ⊢ C
Γ ; · ⊢ B⇓ Γ ,B;∆ ⊢ C

cut!⇓
Γ ;∆ ⊢ C

These intermediate cut rules are not a burden, as they can be eliminated in a fairly simple
way and we shall hide them in this big-step presentation of cut-elimination. We distinguish
two cases:

• B is positive. Then the left branch must end with an intial rule. We have then B ∈ Γ (or,
in the case of cut⇓, ∆1 = B). We can then obtain a proof of the conclusion from that of
the right-premise by adjusting initial rules involving the formula B (in a straightforward
way) and by applying strengthening (in the case of cut!⇓).

• B is negative. Then the left sub-proof ends with the Rr rule, and we can replace the cut⇓
(resp. cut!⇓) rule with a cut (resp. cut!).

By combining all these steps, we manage to transform a proof with one cutk into a
proof with several cut and cut!, each of which has a cut formula strictly smaller than
the original cut formula, except in the following cases:

• The cut formula is a negative atom. Then the cut is simply eliminated.

• The cut formula is a positive atom. Then we obtain a proof with a cut of the
same cut formula.

124

Eliminating cutk!. Let Π be an ILLF⊃,⊸ proof of the form

Π1
Γ ; · ⊢ B⇑

Π2

Γ ;∆⇓!B ⊢ α
cutk!

Γ ;∆ ⊢ α
where Π1 andΠ2 are both cut-free.

By Proposition 49,Π2 is of the form{
Ξi

Γ ; · ⊢ Ci ⇓

}
Ci∈Γ ′

{
Ξ′j

Γ ;Θj ⊢Dj ⇓

}
Dj∈∆′

Π′2

Γ ;Θ⇓all-empty({Θj })β ⊢ α

Γ ;∆⇓!B ⊢ α
where Γ ′;∆′ ⊢ β is the border sequent associated with B, and we have

⊎
jΘj ⊎Θ = ∆.

By Proposition 47,Π1 is of the form
Π′1

Γ ,Γ ′;∆′ ⊢ β

Γ ; · ⊢ B⇑
We distinguish two cases:
1. all-empty({Θj}) =⊸. In this case, we can proceed in exactly the same way as in the

case of cutk .

2. all-empty({Θj}) = !, that is, Θj are all empty, and thus Θ = ∆. We distinguish two cases
following the polarity of β:

• β is positive. ThenΠ′2 is of the form
Π′′2

Γ ,β;∆ ⊢ α
Rl

Γ ;∆⇓!β ⊢ α
We have:{

Ξi

Γ ; · ⊢ Ci ⇓

}
Ci∈Γ ′

{
Ξ′j

Γ ; · ⊢Dj ⇓

}
Dj∈∆′

Π′1
Γ ,Γ ′;∆′ ⊢ β

cut∗⇓, cut
∗
!⇓

Γ ; · ⊢ β
Π′′2

Γ ,β;∆ ⊢ α
cut!

Γ ;∆ ⊢ α
• β is negative. Then we have ∆ =Θ = · and α = β. We proceed as in the case where
γ is positive, without the last cut!.

By eliminating these intermediate cuts as previously, we manage to transform a proof
with (only) one cutk into a proof with several cut and cut!, each of which has a cut
formula strictly smaller than the original cut formula, except in the following cases:

• The cut formula is a negative atom. Then the cut is simply eliminated.

• The cut formula is a positive atom. Then we obtain a proof with a cut! of the
same cut formula.

125

Summing up. From the description above, we have the following:

• A cut with a positive formula can be simply eliminated.

• A cut with a negative formula can be replaced by a cutk with the same cut formula.

• A cut! with a positive formula can be simply eliminated.

• A cut! with a negative formula can be replaced by (possibly many) occurrences of cutk!
with the same cut formula.

• A cutk with a positive formula can be replaced with a cut of the same cut formula.

• A cutk with a negative and atomic cut formula can be simply eliminated.

• A cutk with a negative and non-atomic cut formula can be replaced with (possibly many)
occurrences of cut and cut! with strictly smaller cut formulas.

• A cutk! with a positive formula can be replaced with a cut! of the same cut formula.

• A cutk! with a negative and atomic cut formula can be simply eliminated.

• A cutk! with a negative and non-atomic cut formula can be replaced with (possibly many)
occurrences of cut and cut! with strictly smaller cut formulas.

As a result, the cut-elimination procedure terminates.

7.5 Soundness and completeness of ILLF⊃,⊸
In this section, we show the soundness and completeness of ILLF⊃,⊸ with respect to ILL⊃,⊸.
It is also known that ILL⊃,⊸ has a faithful translation into intuitionistic linear logic. In other
words, ILLF⊃,⊸ and ILL⊃,⊸ capture the same fragment of ILL.

We show the soundness of ILLF⊃,⊸ by giving a translation of ILLF⊃,⊸ proofs into ILL⊃,⊸
proofs in a fairly straightforward way.

Theorem 16 (Soundeness of ILLF⊃,⊸ w.r.t. ILL⊃,⊸).

1. If Γ ;∆ ⊢ B⇑ has an ILLF⊃,⊸ proof then Γ ;∆ ⊢ B has an ILL⊃,⊸ proof. Here, B⇑ means B
or B ⇑.

2. If Γ ;∆⇓!B ⊢ α has an ILLF⊃,⊸ proof then Γ ,B;∆ ⊢ α has an ILL⊃,⊸ proof.

3. If Γ ;∆⇓⊸B ⊢ α has an ILLF⊃,⊸ proof then Γ ;∆,B ⊢ α has an ILL⊃,⊸ proof.

4. If Γ ;∆ ⊢ B⇓ has an ILLF⊃,⊸ proof then Γ ;∆ ⊢ B has an ILL⊃,⊸ proof.

Proof. We proceed by mutual induction on the structure of ILLF⊃,⊸ proofs of all these kinds
of sequents.

1. LetΠ be an ILLF⊃,⊸ proof of Γ ;∆ ⊢ B⇑ . Cases of the last rule ofΠ:

• Sr . We can conclude directly from i.h..

126

• ⊃ R. ThenΠ is of the form

Π′

Γ ,B1;∆ ⊢ B2⇑ ⊃ R
Γ ;∆ ⊢ B1 ⊃ B2⇑

By i.h., there is an ILL⊃,⊸ proof Ξ′ of Γ ,B1;∆ ⊢ B2. Then we have the following
ILL⊃,⊸ proof

Ξ′

Γ ,B1;∆ ⊢ B2 ⊃ R
Γ ;∆ ⊢ B1 ⊃ B2

• ⊸ R. ThenΠ is of the form

Π′

Γ ;∆,B1 ⊢ B2⇑
⊸ R

Γ ;∆ ⊢ B1⊸ B2⇑

By i.h., there is an ILL⊃,⊸ proof Ξ′ of Γ ;∆,B1 ⊢ B2. Then we have the following
ILL⊃,⊸ proof

Ξ′

Γ ;∆,B1 ⊢ B2
⊸ R

Γ ;∆ ⊢ B1⊸ B2

2. LetΠ be an ILLF⊃,⊸ proof of Γ ;∆ ⊢ α. Cases of the last rule ofΠ:

• Dl . ThenΠ is of the form

Π′

Γ ′,N ;∆⇓!N ⊢ α
Dl

Γ ′,N ;∆ ⊢ α

By i.h., there is a ILL⊃,⊸ proof Ξ′ of Γ ′,N ,N ;∆ ⊢ α. The only rule in ILL⊃,⊸ that
involves formulas in the unrestricted zone being absorb, it is clear that there is a
ILL⊃,⊸ proof Ξ of Γ ′,N ;∆ ⊢ α.

• D⊸l . Straightforward by i.h..
• Dr . Straightforward by i.h..

3. LetΠ be an ILLF⊃,⊸ proof of Γ ;∆⇓!B ⊢ α. Cases of the last rule ofΠ.

• ⊃ L. ThenΠ is of the form

Π1
Γ ; · ⊢ B1⇓

Π2

Γ ;∆⇓!B2 ⊢ α ⊃ L
Γ ;∆⇓!B1 ⊃ B2 ⊢ α

By i.h., there are ILL⊃,⊸ proofs Ξ1 of Γ ; · ⊢ B1 and Ξ2 of Γ ,B2;∆ ⊢ α. We now
show how to obtain an ILL⊃,⊸ proof of Γ ,B1 ⊃ B2;∆ ⊢ α from Ξ2.

127

We construct the proof from the conclusion following the same rules as in Ξ2. Such
a construction is always possible except when one apply an absorb rule on the
formula B2 in Ξ2, that is, when we reach the following:

Ξ′2
Γ ′,B2;∆′,B2 ⊢ ∆

absorb
Γ ′,B2;∆′ ⊢ C

Then we can continue our construction:
Γ ′,B1 ⊃ B2; · ⊢ B1 Γ ′,B1 ⊃ B2;∆′,B2 ⊢ C ⊃ L

Γ ′,B1 ⊃ B2;∆′,B1 ⊃ B2 ⊢ ∆
absorb

Γ ′,B1 ⊃ B2;∆′ ⊢ C

A proof of the first endsequent Γ ′,B1 ⊃ B2; · ⊢ B1 can be obtained by Ξ1 by weak-
ening (note that Γ ⊆ Γ ′ by the structure of ILL⊃,⊸ rules). We can then continue
constucting the proof of the second endsequent using the sub-proof Ξ′2 of Ξ in the
same way.

• ⊸ L1. Similar to the previous case.
• ⊸ L2. ThenΠ is of the form

Π1
Γ ;∆1 ⊢ B1⇓

Π2
Γ ;∆2⇓⊸B2 ⊢ α

⊸ L2
Γ ;∆1,∆2⇓!B1 ⊃ B2 ⊢ α

By i.h., there are ILL⊃,⊸ proofs Ξ1 of Γ ;∆1 ⊢ B1 and Ξ2 of Γ ;∆2,B2 ⊢ α. Then we
have an ILL⊃,⊸ proof Ξ =

Ξ′1
Γ ,B1⊸ B2;∆1 ⊢ B1

Ξ′2
Γ ,B1⊸ B2;∆2,B2 ⊢ α

⊸ L
Γ ,B1⊸ B2;∆1,∆2,B1⊸ B2 ⊢ α

absorb
Γ ,B1⊸ B2;∆1,∆2 ⊢ α

where Ξ′1 (resp. Ξ
′
2) is obtained from Ξ1 (resp. Ξ′2) by weakening.

• Rl . Straightforward by i.h..

4. LetΠ be an ILLF⊃,⊸ proof of Γ ;∆⇓⊸B ⊢ α. Cases of the last rule ofΠ.

• ⊃ L. ThenΠ is of the form
Π1

Γ ; · ⊢ B1⇓
Π2

Γ ;∆⇓⊸B2 ⊢ α ⊃ L
Γ ;∆⇓⊸B1 ⊃ B2 ⊢ α

By i.h., there are ILL⊃,⊸ proofs Ξ1 of Γ ; · ⊢ B1 and Ξ2 of Γ ;∆,B2 ⊢ α. Then we
have an ILL⊃,⊸ proof Ξ =

Ξ1
Γ ; · ⊢ B1

Ξ2
Γ ;∆,B2 ⊢ α ⊃ L

Γ ;∆,B1 ⊃ B2 ⊢ α

128

• ⊸ L1 or⊸ L2. Similar to the previous case.
• R⊸l . Straightforward by i.h..

5. LetΠ be an ILLF⊃,⊸ proof of Γ ;∆ ⊢ B⇓ . Cases of the last rule ofΠ:

• Ir . We have an ILL⊃,⊸ proof Ξ =

I
Γ ,α;α ⊢ α

absorb
Γ ,α; · ⊢ α

• Ir . We have an ILL⊃,⊸ proof Ξ =

I
Γ ;α ⊢ α

• Rr . Straightforward by i.h..

To prove the completeness of ILLF⊃,⊸, we need the admissibility of the general initial rule.

Proposition 50 (Admissibility of the general initial rule). For all B,

1. Γ ;B ⊢ B⇑ has an ILLF⊃,⊸ proof,

2. Γ ,B; · ⊢ B⇑ has an ILLF⊃,⊸ proof,

3. Γ ;B ⊢ B⇓ has an ILLF⊃,⊸ proof, and

4. Γ ,B; · ⊢ B⇓ has an ILLF⊃,⊸ proof.

Proof. We prove these points by mutual induction on the structure of ILLF⊃,⊸ proofs. Now
consider the point (1). Cases of B:

• B is a positive atom α. We have:

I⊸r
Γ ;α ⊢ α⇓

Dr
Γ ;α ⊢ α

Sr
Γ ;α ⊢ α⇑

and

Ir
Γ ,α; · ⊢ α⇓

Dr
Γ ,α; · ⊢ α

Sr
Γ ,α; · ⊢ α⇑

,

and the last two points are trivial by using initial rules.

• B is negative. Note that in this case, the last two points follow immediately from the first
two points thanks to the Rr rule. Let us prove the first point. By Proposition 47, we have

Γ ,Γ ′;B,∆′ ⊢ α
Γ ;B ⊢ B⇑

129

where we assume that B is associated with the border sequent Γ ′;∆′ ⊢ α. Applying now
the D⊸l rule and we have:

{Γ ,Γ ′; · ⊢ Ci ⇓}Ci∈Γ ′
{
Γ ,Γ ′;Dj ⊢Dj ⇓

}
Dj∈∆′

Γ ,Γ ′; ·⇓⊸α ⊢ α

Γ ,Γ ′;∆′ ⇓⊸B ⊢ α
D⊸l

Γ ,Γ ′;B,∆′ ⊢ α

by Proposition 48. By i.h., the premises corresponding to Ci and Dj are all provable in
ILLF⊃,⊸, and the right-most premise is clearly provable.

The point (2) can be proved in a similar way. The points (3) and (4) are trivial when B is a
positive atom, and are immediate consequences of the points (1) and (2) otherwise.

Theorem 17 (Completness of ILLF⊃,⊸ w.r.t. ILL⊃,⊸). If Γ ;∆ ⊢ B has a cut-free ILL⊃,⊸ proof

then Γ ;∆ ⊢ B⇑ has a cut-free ILLF⊃,⊸ proof.

Proof. We proceed by induction on the structure of ILL⊃,⊸ proofs. LetΠ be a ILL⊃,⊸ proof
of Γ ;∆ ⊢ B. Cases of the last rule ofΠ:

• I . Straightforward by Proposition 50.

• absorb. ThenΠ is of the form

Π′

Γ ′,C;∆,C ⊢ B
absorb

Γ ′,C;∆ ⊢ B

By i.h., there is a cut-free ILLF⊃,⊸ proof Ξ′ of Γ ′,C;∆,C ⊢ B⇑ . By Proposition 50,
there is a cut-free ILLF⊃,⊸ proof Γ ′,C; · ⊢ C⇑ . By introducing a cut between the two
cut-free proofs and by applying cut-elimination, we obtain a cut-free ILLF⊃,⊸ proof of
Γ ′,C;∆ ⊢ B⇑ .

• ⊃ L. ThenΠ is of the form

Π1
Γ ; · ⊢ B1

Π2
Γ ;∆′,B2 ⊢ B ⊃ L

Γ ;∆′,B1 ⊃ B2 ⊢ B

By i.h., there are cut-free ILLF⊃,⊸ proofs Ξ1 of Γ ; · ⊢ B1⇑ and Ξ2 of Γ ;∆′,B2 ⊢ B⇑ . By
Proposition 50, there is a cut-free ILLF⊃,⊸ proof of Γ ;B1 ⊃ B2 ⊢ B1 ⊃ B2⇑ and by the
invertibility of ⊃ R, there is a cut-free ILLF⊃,⊸ proof Ξ′ of Γ ,B1;B1 ⊃ B2 ⊢ B2⇑ . By
applying cut-elimination to the following proof

Ξ1
Γ ; · ⊢ B1⇑

Ξ′

Γ ,B1;B1 ⊃ B2 ⊢ B2⇑
cut!

Γ ;B1 ⊃ B2 ⊢ B2⇑
Ξ2

Γ ;∆′,B2 ⊢ B⇑
cut

Γ ;∆′,B1 ⊃ B2 ⊢ B⇑

we obtain a cut-free ILLF⊃,⊸ proof of Γ ;∆′,B1 ⊃ B2 ⊢ B⇑ .

130

• ⊸ L. ThenΠ is of the form
Π1

Γ ;∆1 ⊢ B1

Π2
Γ ;∆2,B2 ⊢ B

⊸ L
Γ ;∆1,∆2,B1⊸ B2 ⊢ B

By i.h., there are cut-free ILLF⊃,⊸ proofs Ξ1 of Γ ;∆1 ⊢ B1⇑ and Ξ2 of Γ ;∆2,B2 ⊢ B⇑ .
By Proposition 50, there is a cut-free ILLF⊃,⊸ proof of Γ ;B1⊸ B2 ⊢ B1⊸ B2⇑ and by
the invertibility of⊸ R, there is a cut-free ILLF⊃,⊸ proof Ξ′ of Γ ;B1⊸ B2,B1 ⊢ B2⇑ .
By applying cut-elimination to the following proof

Ξ1
Γ ;∆1 ⊢ B1⇑

Ξ′

Γ ;B1⊸ B2,B1 ⊢ B2⇑
cut

Γ ;∆1,B1⊸ B2 ⊢ B2⇑
Ξ2

Γ ;∆2,B2 ⊢ B⇑
cut

Γ ;∆1,∆2,B1⊸ B2 ⊢ B⇑

we obtain a cut-free ILLF⊃,⊸ proof of Γ ;∆1,∆2,B1⊸ B2 ⊢ B⇑ .

7.6 Term representation
Having defined synthetic inference rules, we can now define extensions of ILL⊃,⊸ with a
polarized theory (T ,δ) in a similar way to Definition 10. Since it is straightforward, we will
ignore the details here. By further restricting to atomic sequents, the only ILL⊃,⊸ rules that
are present in the extensions are the initial rule I and the "contraction" rule absorb.

As in Section 1.7, the absorb rule, which plays the role of contraction, is somehow redun-
dant, and a certain modification to the extensions must be done before applying our approach
to term representation. Before presenting the modification, we first illustrate this redundancy
with a simple example.

In an earlier example, we show that N = α ⊸ β (with both α and β positive) has the
following two synthetic inference rules:

Γ ,N ;∆,β ⊢ γ
Γ ,N ;∆,α ⊢ γ

Γ ,N ,β;∆ ⊢ γ
{α} ⊑ Γ

Γ ,N ;∆ ⊢ γ

As a result, the extension ILLU({α ⊃ β},δ+) includes the following rules:

I
Γ ;B ⊢ B

Γ ,B;∆,B ⊢ C
absorb

Γ ,B;∆ ⊢ C
Γ ;∆,β ⊢ γ

N1
Γ ;∆,α ⊢ γ

Γ ,β;∆ ⊢ γ
{α} ⊑ Γ N2

Γ ;∆ ⊢ γ
Then the sequent α; · ⊢ β has the following proofs:

I
α,β;β ⊢ β

absorb
α,β; · ⊢ β

N2
α; · ⊢ β

and

I
α;β ⊢ β

N1
α;α ⊢ β

absorb
α; · ⊢ β

131

By interpreting these proofs from conclusions, the first proof can be interpreted as "using the
unrestricted resource α to obtain another unrestricted resource β and using (a copy of) the
unrestricted resource β to finish the proof", while the second proof can be interpreted as "using
(a copy of) the unrestricted resource α to obtain a linear resource β which is used to finish the
proof". As one can tell, these two proofs have essentially the same spirit. It is then desirable
to keep only one of them. Note that the whole point of using ILLF⊃,⊸ instead of ILLF−+⊃,⊸
is that in ILLF⊃,⊸, synthetic inference rules allow adding (positive atomic) formulas to the
unrestricted zone (corresponding to the L.H.S. of a sequent in LJF⊃), which is crucial in our
study of sharing. As a result, of the two proofs above, we prefer keeping the first one.

Essentially, there is no more need to apply absorb to obtain copies of some formulas in
the unrestricted zone before applying synthetic inference rules as there is always a synthetic
inference rule that allows using directly these formulas in the unrestricted zone. We end up
with proofs with applications of absorb only before I . Such applications of absorb can be
further eliminated by introducing the following I ! rule:

I !
Γ ,B; · ⊢ B

The extension ILLU(T ,δ) of ILL⊃,⊸ by the polarized theory (T ,δ) now contains only the
initial rules (I and I !) and the rules corresponding to the synthetic inference rules of formulas
from T under δ. It is then reasonable to expect our approach to term representation to be able
to be adpated to this setting.

Let us illustrate the idea with the following simple example. Consider T = {α ⊃ α ⊃ α}.
Then ILLU(T ,δ+) contains the initial rules and the following rules:

Γ ;∆,α ⊢ β
Γ ;α,α,∆ ⊢ β

Γ ;∆,α ⊢ β
{α} ⊑ Γ

Γ ;α,∆ ⊢ β
Γ ;∆,α ⊢ β

{α} ⊑ Γ
Γ ;α,∆ ⊢ β

Γ ,α; · ⊢ β
{α,α} ∈ Γ

Γ ; · ⊢ β

At first sight, the second and the third rules might have the same form but their difference will
become visible once we annotate them with terms.

There is however a difference between the intuitionistic setting (with LJ⊃) and this linear
setting (with ILL⊃,⊸): there should be two types of variables, namely the standard ones x,y,z,
and the linear ones x,y,z. The standard variables can be used as many times as possible
within a term while each linear variable can only be used exactly once. They correspond to
the unrestricted zone and the linear zone of an ILLF⊃,⊸ sequent, respectively.

Now we can annotate the four inference rules above, together with the initial rules, as
follows:

I
Γ ;x : α ⊢ x : α

I !
Γ ,x : α; · ⊢ x : α

Γ ;∆,x : α ⊢ t : β
Γ ;y : α,z : α,∆ ⊢ t[x�cyz] : β

Γ ;∆,x : α ⊢ t : β
{y : α} ⊆ Γ

Γ ;z : α,∆ ⊢ t[x�cyz] : β

Γ ;∆,x : α ⊢ t : β
{z : α} ⊆ Γ

Γ ;y : α,∆ ⊢ t[x�cyz] : β

Γ ,x : α; · ⊢ t : β
{y : α,z : α} ⊆ Γ

Γ ; · ⊢ t[x�cyz] : β

Here we can clearly see the role of linearity with respect to naming and sharing. If a naming
uses a linear resource, then the fresh name introduced should also be linear. If a naming only

132

uses unrestricted resources, then the fresh name introduced is also unrestricted and can be
used multiple times to allow sharing.

From the form of these four rules (other than the initial rules), readers might link them to
four different formulas, namely α⊸ α⊸ α,α ⊃ α⊸ α,α⊸ α ⊃ α and α ⊃ α ⊃ α. Indeed,
each of these formulas has a synthetic inference rule that has exactly of the same form as one of
the four rules above, respectively. However, our approach justifies that these rules are for the
same constructor c. This provides the possibility of interpreting the constructor/constant c.

The idea is to interpret c as an "abstraction" of the type α⊸ α⊸ α (we do not say that
c is interpreted as a term since terms have atomic types). For this, we also assume another
constant d of type α⊸ α⊸ α in T and interpret c as the following "abstraction":

I·;z : α ⊢ z : α
·;x : α,y : α ⊢ z[z�dyx] : α

⊸ R2

·; · ⊢ λx.λy.z[z�dyx] : α⊸ α⊸ α

By interpretation we actually mean cut-elimination. By regarding ILLU(T ,δ+) proofs as
ILLF⊃,⊸ proofs, we obtain proofs of sequents whose L.H.S. include the formulas (c :)α⊸
α⊸ α, (d :)α⊸ α⊸ α. Similarly, the above proof can be seen as an ILLF⊃,⊸ proof of a
sequent of the form (d :)α⊸ α⊸ α; · ⊢ α⊸ α⊸ α⇑ . By introducing a cut (with one cut
formula being c : α⊸ α⊸ α) between these proofs and by cut-elimination, we obtain proofs
of sequents whose L.H.S. include (d :)α⊸ α⊸ α only.

This interpretation of c transforms a term t built with constructors c and d into a term t#

built with d only. We have:

(t[x�cyz])# = t#[x�dzy] (t[x�cyz])# = t#[x�dzy]
(t[x�cyz])# = t#[x�dzy] (t[x�cyz])# = t#[x�dzy]

It is not difficult to see that the linearity condition of linear variables remains satisfied, as one
would expect.

This example shows how the proof system ILLF⊃,⊸ allows exploring the notion of linearity
by considering different synthetic inference rules of the same formula, which in turn makes
explicit uses of contraction (that is, absorb in ILL⊃,⊸) unnecessary.

To conclude, we have proposed the focused proof system ILLF⊃,⊸ as an extension of LJF⊃
with the linear implication⊸ and described how our approach to term representation can be
adapted to this setting. There are at least two possible directions that we leave as future work:

1. Proof theory: it would be natural to extend ILLF⊃,⊸ to include the full fragment of
(propositional) linear logic. Adding the negative conjunction & and its unit ⊤ should not
be a problem while adding the negative disjunction ` and its unit ⊥ is far from trivial
and requires more understanding.

2. Terms-as-programs: it would also be interesting to see how our "terms-as-programs"
approach can be adapted to this setting with linearity.

133

134

Part V

Conclusion

135

Chapter 8

Conclusion and future work

We have presented various new aspects of the study of term representation and proof theory.
In this chapter, we briefly sum up the content of each part and discuss some possible future
directions.

In Part I, we review some basic notions and preliminary results in structural proof theory.
In particular, we introduce the focused proof system LJF⊃, give an alternative presentation of
synthetic inference rules by Marin et al. [MMPV22], and show how synthetic inference rules
allow us to extend the unfocused proof system LJ⊃ with a polarized theory. We also give a
brief introduction to the λ-calculus and explicit substitutions.

In Part II, following the proofs-as-terms slogan, we show how different styles of term
representation arise from the focused proof system LJF⊃ and synthetic inference rules based
on different polarizations. In particular, the negative polarization leads to the negative bias
syntax, that is, the usual tree-like syntax. In contrast, the positive polarization leads to the
positive bias syntax, which allows sharing via (specific forms of) explicit substitutions. We
have answered natural questions such as: "How terms using different polarizations can be
compared/transformed to each other?" or "How can cut-elimination be relevant even when
all terms correspond to cut-free proofs?" We also give a concrete example by applying our
approach to untyped λ-terms. As one would expect, the negative bias syntax corresponds to
the usual syntax of untyped λ-terms while the positive bias syntax yields positive λ-terms, a
presentation of untyped λ-terms with very restricted forms of explicit substitutions. We also
give a notion of equality on positive λ-terms based on their corresponding untyped λ-terms.
Such an equality has been studied in the literature on a different presentation of λ-terms with
sharing, and a linear algorithm has been proposed based on some graphical representation
called λ-graphs. In order to be able to apply such an algorithm, we define λ-graphs with bodies,
a graphical presentation of positive λ-terms capturing an equivalent relation called structural
equivalence on terms. λ-graphs with bodies can be seen as an extension of λ-graphs, making
it possible to apply the linear algorithm to positive λ-terms.

Until now, we have not yet explored the full power of Liang and Miller’s LJF system. First,
we have only considered the two uniform polarizations that provide term structures with and
without sharing, respectively. There are, however, some situations where one might prefer
a term representation mixing these two styles. This is possible with LJF when negative and
positive atoms are considered simultaneously. We also expect the graphical representation of
positive bias syntax to be smoothly adapted to this more general setting. It is unclear whether
this general setting has any interesting applications, but it is definitely worth investigating.

137

Another possible direction is on the side of proof theory. In this thesis (as well as in
[MMPV22]), only formulas of order at most 2 are used to extend the unfocused system LJ⊃
(LJ and LK), because of the simple form of their synthetic inference rules. The synthetic
inference rule of a formula of order 3 or more has at least one premise containing an additional
non-atomic formula on the L.H.S. compared to its conclusion. This would break, for example,
the restriction of having only atomic sequents in our setting. In the most general setting where
we do not impose any restriction on sequents, there are at least two choices. One can either
add explicitly that additional non-atomic formula B to the L.H.S. or put some kind of a label
marking that "the synthetic inference rule of B is now available in this branch". The former,
due to the occurrence of B on the L.H.S., requires to consider the ⊃ L rule of LJ⊃, while the
latter makes it possible to ignore ⊃ L in the extensions of LJ⊃. Such an idea has notably been
explored in the context of natural deduction by Schroeder-Heister [Sch84], and sequent calculus
by Avron [Avr90]. It would be interesting to see how our approach to term representation
works in this setting.

In Part III, we make a twist from the proofs-as-terms slogan: the slogan becomes terms-
as-programs. By an analogy to the relation between λ-terms and the λ-calculus, we show
that it is possible to define the positive λ-calculus λpos, a call-by-value λ-calculus with explicit
substitutions, based on positive λ-terms. Note that it is not yet another instance of the Curry-
Howard correspondence, as positive λ-terms correspond to cut-free proofs. Despite not being
directly given by cut-elimination, the reduction of λpos is, however, inspired by proof-theoretic
considerations and the cut-elimination procedure of LJF⊃ plays a role there. We show how the
positive λ-calculus surprisingly captures the essence of useful sharing, a concept in calculi
with sharing that was previously introduced in the literature on reasonable cost models, via a
translation from Accattoli and Paolini’s value substitutions calculus to the positive λ-calculus.

Recently, Barenbaum et al. proposed the first non-idempotent intersection type system that
they show to capture the essence of useful evaluation [BKM24]. A big difference is that even
exponential steps for variables are classified as useful or non-useful in their setting. It would
be natural to see how their work on usefulness relates to our approach.

Another direction that we would like to explore is to account for usefulness in call-by-need
settings using the positive λ-calculus. Thanks to its rather restricted and low-level syntax,
we expect λpos to play the role of a bridge between calculi and implementations (abstract
machines, for example).

In Part IV, we present our first attempt to extend LJF⊃ with a notion of linearity. The
main novelty of our system ILLF⊃,⊸ is that it allows atoms to be given the positive polarity
in a setting where all the logical connectives are negative, which is in contrast to Miller’s
Forum [Mil96] system for linear logic. We show that this focused proof system has good
meta-properties that we expect from a proof system and describe how our approach to term
representation can be applied to this setting. What remains unclear is whether this approach
allows us to explore interesting calculi with our term-as-programs approach explored in Part III.

138

Bibliography

[ABKL14] Beniamino Accattoli, Eduardo Bonelli, Delia Kesner, and Carlos Lombardi. A non-
standard standardization theorem. In Suresh Jagannathan and Peter Sewell, editors,
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 659–670.
ACM, 2014.

[Acc15] Beniamino Accattoli. Proof nets and the call-by-value λ-calculus. Theor. Comput.

Sci., 606:2–24, 2015.

[Acc23] Beniamino Accattoli. Exponentials as substitutions and the cost of cut elimination
in linear logic. Log. Methods Comput. Sci., 19(4), 2023.

[ACCL91] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. J. Funct. Program., 1(4):375–416, 1991.

[ACGC19] Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, and Claudio Sacerdoti
Coen. Crumbling abstract machines. In Ekaterina Komendantskaya, editor, Proceed-
ings of the 21st International Symposium on Principles and Practice of Programming

Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019, pages 4:1–4:15. ACM,
2019.

[ACSC21] Beniamino Accattoli, Andrea Condoluci, and Claudio Sacerdoti Coen. Strong
call-by-value is reasonable, implosively. In 36th Annual ACM/IEEE Symposium on

Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–14.
IEEE, 2021.

[ADL16] Beniamino Accattoli and Ugo Dal Lago. (leftmost-outermost) beta reduction is
invariant, indeed. Log. Methods Comput. Sci., 12(1), 2016.

[ADLV22] Beniamino Accattoli, Ugo Dal Lago, and Gabriele Vanoni. Reasonable space for
the λ-calculus, logarithmically. In Christel Baier and Dana Fisman, editors, LICS
’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel,

August 2 - 5, 2022, pages 47:1–47:13. ACM, 2022.

[AK10] Beniamino Accattoli and Delia Kesner. The structural lambda-calculus. In Anuj
Dawar and Helmut Veith, editors, Computer Science Logic, 24th International Work-

shop, CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August

23-27, 2010. Proceedings, volume 6247 of Lecture Notes in Computer Science, pages
381–395. Springer, 2010.

139

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J.
Log. Comput., 2(3):297–347, 1992.

[And01] Jean-Marc Andreoli. Focussing and proof construction. Ann. Pure Appl. Log.,
107(1-3):131–163, 2001.

[AP12] Beniamino Accattoli and Luca Paolini. Call-by-value solvability, revisited. In Tom
Schrijvers and Peter Thiemann, editors, Functional and Logic Programming - 11th

International Symposium, FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings,
volume 7294 of Lecture Notes in Computer Science, pages 4–16. Springer, 2012.

[ASC17] Beniamino Accattoli and Claudio Sacerdoti Coen. On the value of variables.
Information and Computation, 255:224–242, 2017.

[Avr90] Arnon Avron. Gentzenizing schroeder-heister’s natural extension of natural de-
duction. Notre Dame J. Formal Log., 31(1):127–135, 1990.

[AW24] Beniamino Accattoli and Jui-Hsuan Wu. Positive focusing is directly useful. In
Valeria De Paiva and Alex Simpson, editors, Proceedings of the 40th Conference on

the Mathematical Foundations of Programming Semantics, MFPS XXXX, University

of Oxford, Oxford, UK, June 19-21, 2024, 2024.

[BG06] Paola Bruscoli and Alessio Guglielmi. On structuring proof search for first order
linear logic. Theor. Comput. Sci., 360(1-3):42–76, 2006.

[BKM24] Pablo Barenbaum, Delia Kesner, and Mariana Milicich. The essense of useful
evaluation through quantitative types (extended version), 2024.

[CAC19] Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen. Sharing
equality is linear. In Ekaterina Komendantskaya, editor, Proceedings of the 21st
International Symposium on Principles and Practice of Programming Languages,

PPDP 2019, Porto, Portugal, October 7-9, 2019, pages 9:1–9:14. ACM, 2019.

[CH00] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In Martin
Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIGPLAN In-

ternational Conference on Functional Programming (ICFP ’00), Montreal, Canada,

September 18-21, 2000, pages 233–243. ACM, 2000.

[Cha08] Kaustuv Chaudhuri. Focusing strategies in the sequent calculus of synthetic
connectives. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,
Logic for Programming, Artificial Intelligence, and Reasoning, 15th International

Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008. Proceedings, volume
5330 of Lecture Notes in Computer Science, pages 467–481. Springer, 2008.

[CHM16] Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof system
isomorphic to expansion proofs. J. Log. Comput., 26(2):577–603, 2016.

[CMS08] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs
via multi-focusing. In Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri,
and C.-H. Luke Ong, editors, Fifth IFIP International Conference On Theoretical

140

Computer Science - TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations

of Computer Science, September 7-10, 2008, Milano, Italy, volume 273 of IFIP, pages
383–396. Springer, 2008.

[CP03] Iliano Cervesato and Frank Pfenning. A linear spine calculus. J. Log. Comput.,
13(5):639–688, 2003.

[DJS95] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. LKQ and LKT: Sequent
calculi for second order logic based upon dual linear decompositions of classi-
cal implication. In Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors,
Advances in linear logic, pages 222–211. Cambridge University Press, 1995.

[DL06] Roy Dyckhoff and Stéphane Lengrand. LJQ: A strongly focused calculus for
intuitionistic logic. In Arnold Beckmann, Ulrich Berger, Benedikt Löwe, and John V.
Tucker, editors, Logical Approaches to Computational Barriers, Second Conference on

Computability in Europe, CiE 2006, Swansea, UK, June 30-July 5, 2006, Proceedings,
volume 3988 of Lecture Notes in Computer Science, pages 173–185. Springer, 2006.

[FGSW07] Daniel P. Friedman, Abdulaziz Ghuloum, Jeremy G. Siek, and Onnie Lynn
Winebarger. Improving the lazy Krivine machine. High. Order Symb. Comput.,
20(3):271–293, 2007.

[FSDF93] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Robert Cartwright, editor, Proceedings of the
ACM SIGPLAN’93 Conference on Programming Language Design and Implementation

(PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993, pages 237–247. ACM, 1993.

[Gen35] Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam,
1935. Translation of articles that appeared in 1934-35. Collected papers appeared
in 1969.

[Gir87] Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[Gir91] Jean-Yves Girard. A new constructive logic: Classical logic. Math. Struct. Comput.

Sci., 1(3):255–296, 1991.

[GM17] Ulysse Gérard and Dale Miller. Separating functional computation from relations.
In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on

Computer Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82
of LIPIcs, pages 23:1–23:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017.

[Gra14] Stéphane Graham-Lengrand. Polarities & Focussing: a journey from Realisability to

Automated Reasoning. 2014.

[Gri90] Timothy Griffin. A formulae-as-types notion of control. In Frances E. Allen,
editor, Conference Record of the Seventeenth Annual ACM Symposium on Principles

of Programming Languages, San Francisco, California, USA, January 1990, pages
47–58. ACM Press, 1990.

141

[Her94] Hugo Herbelin. A lambda-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science

Logic, 8th International Workshop, CSL ’94, Kazimierz, Poland, September 25-30,

1994, Selected Papers, volume 933 of Lecture Notes in Computer Science, pages 61–75.
Springer, 1994.

[Her95] Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents

comme calcul de lambda-termes et comme calcul de stratégies gagnantes. (Computing

with sequents: on the interpretation of sequent calculus as a calculus of lambda-terms

and as a calculus of winning strategies). PhD thesis, Paris Diderot University, France,
1995.

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer

Architecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings, volume
201 of Lecture Notes in Computer Science, pages 190–203. Springer, 1985.

[Lam90] John Lamping. An algorithm for optimal lambda calculus reduction. In Frances E.
Allen, editor, Conference Record of the Seventeenth Annual ACM Symposium on

Principles of Programming Languages, San Francisco, California, USA, January 1990,
pages 16–30. ACM Press, 1990.

[Lau02] Olivier Laurent. Etude de la polarisation en logique. PhD thesis, Université de la
Méditerranée-Aix-Marseille II, 2002.

[Lau03] Olivier Laurent. Polarized proof-nets and lambda-µ-calculus. Theor. Comput. Sci.,
290(1):161–188, 2003.

[Lau17] Olivier Laurent. A proof of the focusing property of linear logic. Unpublished note.
Revised, 2017.

[LM09] Chuck C. Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theor. Comput. Sci., 410(46):4747–4768, 2009.

[LM11] Chuck C. Liang and Dale Miller. A focused approach to combining logics. Ann.
Pure Appl. Log., 162(9):679–697, 2011.

[LPT03] Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in
call-by-value programming languages. Inf. Comput., 185(2):182–210, 2003.

[Mil] Dale Miller. Proof theory, proof search, and logic programming. https://www.
lix.polytechnique.fr/Labo/Dale.Miller/book-25-08-2023.pdf. Un-
published monograph.

[Mil96] Dale Miller. Forum: A multiple-conclusion specification logic. Theor. Comput. Sci.,
165(1):201–232, 1996.

[MMPV22] Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to
synthetic inference rules via focusing. Ann. Pure Appl. Log., 173(5):103091, 2022.

142

https://www.lix.polytechnique.fr/Labo/Dale.Miller/book-25-08-2023.pdf
https://www.lix.polytechnique.fr/Labo/Dale.Miller/book-25-08-2023.pdf

[MN12] Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic. Cam-
bridge University Press, 2012.

[Mog88] Eugenio Moggi. Computational λ-Calculus and Monads. LFCS report ECS-LFCS-
88-66, University of Edinburgh, 1988.

[Mog89] Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings of the

Fourth Annual Symposium on Logic in Computer Science (LICS ’89), Pacific Grove,

California, USA, June 5-8, 1989, pages 14–23. IEEE Computer Society, 1989.

[Mun09] Guillaume Munch-Maccagnoni. Focalisation and classical realisability. In Erich
Grädel and Reinhard Kahle, editors, Computer Science Logic, 23rd international

Workshop, CSL 2009, 18th Annual Conference of the EACSL, Coimbra, Portugal,

September 7-11, 2009. Proceedings, volume 5771 of Lecture Notes in Computer Science,
pages 409–423. Springer, 2009.

[MW23] Dale Miller and Jui-Hsuan Wu. A positive perspective on term representation
(invited talk). In Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual

Conference on Computer Science Logic, CSL 2023, February 13-16, 2023, Warsaw,

Poland, volume 252 of LIPIcs, pages 3:1–3:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023.

[Par92] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In Andrei Voronkov, editor, Logic Programming and Automated

Reasoning,International Conference LPAR’92, St. Petersburg, Russia, July 15-20, 1992,

Proceedings, volume 624 of Lecture Notes in Computer Science, pages 190–201.
Springer, 1992.

[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor.
Comput. Sci., 1(2):125–159, 1975.

[PNN16] Elaine Pimentel, Vivek Nigam, and João Neto. Multi-focused proofs with different
polarity assignments. Electronic Notes in Theoretical Computer Science, 323:163–179,
2016.

[Sch84] Peter Schroeder-Heister. A natural extension of natural deduction. J. Symb. Log.,
49(4):1284–1300, 1984.

[Ses97] Peter Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):231–264,
1997.

[SF92] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. In Jon L. White, editor, Proceedings of the Conference on Lisp and

Functional Programming, LFP 1992, San Francisco, California, USA, 22-24 June 1992,
pages 288–298. ACM, 1992.

[SGM02] David Sands, Jörgen Gustavsson, and Andrew Moran. Lambda Calculi and Linear
Speedups. In The Essence of Computation, Complexity, Analysis, Transformation.

Essays Dedicated to Neil D. Jones, pages 60–84, 2002.

143

[Sim14] Robert J. Simmons. Structural focalization. ACM Trans. Comput. Log., 15(3):21:1–
21:33, 2014.

[SW97] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Trans. Program.

Lang. Syst., 19(6):916–941, 1997.

[Wad71] Christophe P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD
thesis, University of Oxford, 1971.

[Wad03] Philip Wadler. Call-by-value is dual to call-by-name. In Colin Runciman and Olin
Shivers, editors, Proceedings of the Eighth ACM SIGPLAN International Conference

on Functional Programming, ICFP 2003, Uppsala, Sweden, August 25-29, 2003, pages
189–201. ACM, 2003.

[Wal04] David Walker. Substructural Type Systems. In Advanced Topics in Types and

Programming Languages. The MIT Press, 12 2004.

[Wan07] Mitchell Wand. On the correctness of the krivine machine. High. Order Symb.

Comput., 20(3):231–235, 2007.

[Wu23] Jui-HsuanWu. Proofs as terms, terms as graphs. In Chung-Kil Hur, editor, Program-

ming Languages and Systems - 21st Asian Symposium, APLAS 2023, Taipei, Taiwan,

November 26-29, 2023, Proceedings, volume 14405 of Lecture Notes in Computer

Science, pages 91–111. Springer, 2023.

[Zei08a] Noam Zeilberger. Focusing and higher-order abstract syntax. In George C. Necula
and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, POPL 2008, San Francisco, California,

USA, January 7-12, 2008, pages 359–369. ACM, 2008.

[Zei08b] Noam Zeilberger. On the unity of duality. Ann. Pure Appl. Log., 153(1-3):66–96,
2008.

144

Appendix A

Auxiliary definitions and detailed proofs

A.1 Contexts and double contexts
This short paragraph provides definitions and technical tools that will be used in the proofs
to reason about (open) contexts, namely the outside-in order on contexts, contexts with two
holes (called double contexts).

Definition 35 (Outside-in context order, disjoint contexts). The outside-in order ≺ is a partial

order over contexts defined as follows:

⟨·⟩ ≺O
O ≺O′

O′′⟨O⟩ ≺O′′⟨O′⟩
We say that O is outer than O′ if O ≺ O′ . If O ̸≺ O′ and O′ ̸≺ O, we say that O and O′ are
disjoint, and write O ∥O′ .

Double Contexts. Double contexts shall be used to compare two contexts on the same term.
They have as base cases binary constructors (that is, applications and ESs) having contexts
replacing their sub-terms, and as inductive cases, they are simply closed by an ordinary context.

Definition 36 (Double contexts). Double contexts O are defined by the following grammar.

Double contexts O F OO′ |O[x�O′] |O⟨O⟩

Some easy facts about double contexts.

• Plugging: the plugging O⟨t,u⟩ of two terms t and u into a double context O is defined
as expected and gives a term. The two ways of plugging one term O⟨t,⟨·⟩⟩ and O⟨⟨·⟩,u⟩
into a double context give instead a context.

• Pairs of disjoint positions and double contexts: every pair of positionsO⟨t⟩ =O′⟨u⟩
which are disjoint, that is, such that O ∥ O′ , gives rise to a double context OO,O′ such
that OO,O′⟨·,u⟩ =O and OO,O′⟨t, ·⟩ =O′ .

Lemma 22. LetO be a double context, and t and t′ be two terms. LetO =O⟨⟨·⟩, t⟩ (resp. O⟨t,⟨·⟩⟩)
and O′ =O⟨⟨·⟩, t′⟩ (resp. O⟨t′,⟨·⟩⟩). Then:

∀pred ∈ {sub,usef,nusef},pred(O)⇔ pred(O′)

Proof. Straightforward by induction on O.

145

A.2 Proof of Proposition 33
Assume t =O⟨t′[x�L⟨v⟩]⟩ →ogc O⟨L⟨t′⟩⟩ = r→oa u.

1. r =O1⟨L′⟨λy.q⟩p⟩ →om O1⟨L′⟨q[y�p]⟩⟩ = u. Then we have:

t =O⟨t′[x�L⟨v⟩]⟩ O⟨L⟨t′⟩⟩ = r = O1⟨L′⟨λy.q⟩p⟩

O1⟨L′⟨q[y�p]⟩⟩ = u

ogc

om

Cases of the positioning of O1 with respect to the other shape of r , namely O⟨L⟨t′⟩⟩:

• O1 ∥O. Then there exists a double context O such that O⟨⟨·⟩,L′⟨λy.q⟩p⟩ =O and
O⟨L⟨t′⟩,⟨·⟩⟩ =O1. Then:

t =O⟨t′[x�L⟨v⟩],L′⟨λy.q⟩p⟩ O⟨L⟨t′⟩,L′⟨λy.q⟩p⟩ = r

O⟨t′[x�L⟨v⟩],L′⟨q[y�p]⟩⟩ O⟨L⟨t′⟩,L′⟨q[y�p]⟩⟩ = u

ogc

om om

ogc

• O ≺O1. That is, O1 =O⟨O2⟩ for some O2. We have then L⟨t′⟩ =O2⟨L′⟨λy.q⟩p⟩.
Sub-cases:
– L ∥ O2. Then there exists a double context O such that O⟨⟨·⟩, t′⟩ = O2 and

O⟨L′⟨λy.q⟩p,⟨·⟩⟩ = L. Let L′′ BO⟨L′⟨q[y�p]⟩,⟨·⟩⟩. We have:

t =O⟨t′[x�

=L⟨v⟩︷ ︸︸ ︷
O⟨L′⟨λy.q⟩p,v⟩]⟩ O⟨

=L⟨t′⟩︷ ︸︸ ︷
O⟨L′⟨λy.q⟩p, t′⟩⟩ = r

O⟨t′[x�O⟨L′⟨q[y�p]⟩,v⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O⟨O⟨L′⟨q[y�p]⟩, t′⟩︸ ︷︷ ︸
=L′′⟨t′⟩

⟩ = u

ogc

om om

ogc

– O2 ≺ L. That is, L =O2⟨O3⟩ for some O3. We have then O3⟨t′⟩ = L′⟨λy.q⟩p.
Since O3 is a substitution context, O3⟨t′⟩ can only be an application when O3
is empty, which in turn implies L =O2. This shall be treated in the following
case.

– L ≺O2. That is, O2 = L⟨O3⟩ for some O3. We have then t′ =O3⟨L′⟨λy.q⟩p⟩.
Then:

t =O⟨O3⟨L′⟨λy.q⟩p⟩[x�L⟨v⟩]⟩ O⟨L⟨O3⟨L′⟨λy.q⟩p⟩⟩⟩ = r

O⟨O3⟨L′⟨q[y�p]⟩⟩[x�L⟨v⟩]⟩ O⟨L⟨O3⟨L′⟨q[y�p]⟩⟩⟩⟩ = u

ogc

om om

ogc

146

• O1 ≺O. That is, O =O1⟨O2⟩ for some O2. We have then O2⟨L⟨t′⟩⟩ = L′⟨λy.q⟩p.
Note that the case where O2 is empty has already been treated. Sub-cases:
– O2 =O3p for some O3. We have then O3⟨L⟨t′⟩⟩ = L′⟨λy.q⟩. Sub-cases:
∗ O3 ∥ L′ . Then there exists a double context O such that O⟨⟨·⟩,λy.q⟩ =O3
and O⟨L⟨t′⟩,⟨·⟩⟩ = L′ . Let L′′ BO⟨t′[x�L⟨v⟩],⟨·⟩⟩. Then:

t =O1⟨

=L′′⟨λy.q⟩︷ ︸︸ ︷
O⟨t′[x�L⟨v⟩],λy.q⟩p⟩ O1⟨

=L′⟨λy.q⟩︷ ︸︸ ︷
O⟨L⟨t′⟩,λy.q⟩p⟩ = r

O1⟨O⟨t′[x�L⟨v⟩],q[y�p]⟩︸ ︷︷ ︸
=L′′⟨q[y�p]⟩

⟩ O1⟨O⟨L⟨t′⟩,q[y�p]⟩︸ ︷︷ ︸
=L′⟨q[y�p]⟩

⟩ = u

ogc

om om

ogc

∗ O3 ≺ L′ . That is, L′ =O3⟨O4⟩ for some O4 (note that O3 and O4 are both
substitution contexts in this case). We have L⟨t′⟩ =O4⟨λy.q⟩. Sub-cases:

(a) L ∥O4. Impossible since O4 is also a substitution context.
(b) L ≺ O4. That is, O4 = L⟨O5⟩ for some O5 (note that O5 is a sub-

stitution context in this case). We have t′ = O5⟨λy.q⟩. Let L′′ B
O3⟨O5[x�L⟨v⟩]⟩. Then:

t =O1⟨

=L′′⟨λy.q⟩︷ ︸︸ ︷
O3⟨O5⟨λy.q⟩[x�L⟨v⟩]⟩p⟩ O1⟨

=L′⟨λy.q⟩︷ ︸︸ ︷
O3⟨L⟨O5⟨λy.q⟩⟩⟩p⟩ = r

O1⟨O3⟨O5⟨q[y�p]⟩[x�L⟨v⟩]⟩︸ ︷︷ ︸
=L′′⟨q[y�p]⟩

⟩ O1⟨O3⟨L⟨O5⟨q[y�p]⟩⟩⟩︸ ︷︷ ︸
=L′⟨q[y�p]⟩

⟩ = u

ogc

om om

ogc

(c) O4 ≺ L. That is, L =O4⟨O5⟩ for some O5. The case where O5 is empty,
that is, L =O4, has already been treated. Assume then that O5 is non-
empty. We have O5⟨t′⟩ = λy.q, which is impossible since O5 is open
and non-empty.

∗ L′ ≺O3. That is, O3 = L′⟨O4⟩ for some O4. Note that the case where O4
is empty, that is, O3 = L′ , has already been treated. Assume then that O4
is non-empty. We have O4⟨L⟨t′⟩⟩ = λy.p, which is impossible since O4 is
open and non-empty.

– O2 = L′⟨λy.q⟩O3 for some O3. We have then O3⟨L⟨t′⟩⟩ = p. Then:

t =O1⟨L′⟨λy.q⟩O3⟨t′[x�L⟨v⟩]⟩⟩ O1⟨L′⟨λy.q⟩O3⟨L⟨t′⟩⟩⟩ = r

O1⟨q[y�O3⟨t′[x�L⟨v⟩]⟩]⟩ O1⟨q[y�O3⟨L⟨t′⟩⟩]⟩ = u

ogc

om om

ogc

2. r = O1⟨O2⟨y⟩[y�L′⟨v′⟩]⟩ →oe O1⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩ = u. The situation is then as
follows:

147

t =O⟨t′[x�L⟨v⟩]⟩ O⟨L⟨t′⟩⟩ = r = O1⟨O2⟨y⟩[y�L′⟨v′⟩]⟩

O1⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩ = u

ogc

oe

Cases of the positioning of O1 with respect to the other shape of r , namely O⟨L⟨t′⟩⟩:

• O1 ∥ O. Then there exists a double context O such that O⟨⟨·⟩,L⟨t′⟩⟩ = O1 and
O⟨O2⟨y⟩[y�L′⟨v′⟩],⟨·⟩⟩ =O. Then:

t =O⟨O2⟨y⟩[y�L′⟨v′⟩], t′[x�L⟨v⟩]⟩ O⟨O2⟨y⟩[y�L′⟨v′⟩],L⟨t′⟩⟩ = r

O⟨L′⟨O2⟨v′⟩[y�v′]⟩, t′[x�L⟨v⟩]⟩ O⟨L′⟨O2⟨v′⟩[y�v′]⟩,L⟨t′⟩⟩ = u

ogc

oe oe

ogc

• O ≺O1. That is,O1 =O⟨O3⟩ for someO3. We have thenL⟨t′⟩ =O3⟨O2⟨y⟩[y�L′⟨v′⟩]⟩.
Sub-cases:
– L ∥O3. Then there exists a double contextO such thatO⟨⟨·⟩,O2⟨y⟩[y�L′⟨v′⟩]⟩ =

L and O⟨t′,⟨·⟩⟩ =O3. Let L′′ BO⟨⟨·⟩,L′⟨O2⟨v′⟩[y�v′]⟩⟩. Then:

t =O⟨t′[x�

=L⟨v⟩︷ ︸︸ ︷
O⟨v,O2⟨y⟩[y�L′⟨v′⟩]⟩]⟩ O⟨

=L⟨t′⟩︷ ︸︸ ︷
O⟨t′,O2⟨y⟩[y�L′⟨v′⟩]⟩⟩ = r

O⟨t′[x�O⟨v,L′⟨O2⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O⟨O⟨t′,L′⟨O2⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨t′⟩

⟩ = u

ogc

oe oe

ogc

– O3 ≺ L. That is, L = O3⟨O4⟩ for some O4 (note that O3 and O4 are both
substitution contexts in this case). We have then O4⟨t′⟩ = O2⟨y⟩[y�L′⟨v′⟩].
Sub-cases:
∗ O4 ∥ ⟨·⟩[y�L′⟨v′⟩]. Impossible since O4 is also a substitution context.
∗ ⟨·⟩[y�L′⟨v′⟩] ≺ O4. That is, O4 = O5[y�L′⟨v′⟩] for some O5 (note that
O5 is a substitution context in this case). We have then O5⟨t′⟩ = O2⟨y⟩.
Sub-cases:

(a) O5 ∥O2. Then there exists a double context O such that O⟨⟨·⟩, y⟩ =O5
and O⟨t′,⟨·⟩⟩ =O2. Let L′′ =O3⟨L′⟨O⟨⟨·⟩,v′⟩[y�v′]⟩⟩. Then:

t =O⟨t′[x�

=L⟨v⟩︷ ︸︸ ︷
O3⟨O⟨v,y⟩[y�L′⟨v′⟩]⟩]⟩ O⟨

=L⟨t′⟩︷ ︸︸ ︷
O3⟨O⟨t′, y⟩[y�L′⟨v′⟩]⟩⟩ = r

O⟨t′[x�O3⟨L′⟨O⟨v,v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O⟨O3⟨L′⟨O⟨t′,v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
=L′′⟨t′⟩

⟩ = u

ogc

oe oe

ogc

148

(b) O5 ≺O2. That is, O2 =O5⟨O6⟩ for some O6. We have then O6⟨y⟩ = t′ .
This is impossible since y is bound in O4 (thus in L).

(c) O2 ≺ O5. That is, O5 = O2⟨O6⟩ for some O6. Assume that O6 is
non-empty (the case where O6 = ⟨·⟩, that is, O5 =O2, has already been
treated). We haveO6⟨t′⟩ = y, which is impossible sinceO6 is non-empty.

∗ O4 ≺ ⟨·⟩[y�L′⟨v′⟩]. That is, ⟨·⟩[y�L′⟨v′⟩] = O4⟨O5⟩ for some O5. The
case where O5 is empty, that is, O4 = ⟨·⟩[y�L′⟨v′⟩] has already been
treated in the case ⟨·⟩[y�L′⟨v′⟩] ≺O4 above, and the case where O4 = ⟨·⟩,
that is, L =O3, will be treated in the case L ≺O3 below.

– L ≺O3. That is,O3 = L⟨O4⟩ for someO4. We have then t′ =O4⟨O2⟨y⟩[y�L′⟨v′⟩]⟩.
Then:

t =O⟨O4⟨O2⟨y⟩[y�L′⟨v′⟩]⟩[x�L⟨v⟩]⟩ O⟨L⟨O4⟨O2⟨y⟩[y�L′⟨v′⟩]⟩⟩⟩ = r

O⟨O4⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩[x�L⟨v⟩]⟩ O⟨L⟨O4⟨L′⟨O2⟨v′⟩[y�v′]⟩⟩⟩⟩ = u

ogc

oe oe

ogc

• O1 ≺O. That is,O =O1⟨O3⟩ for someO3. We have thenO3⟨L⟨t′⟩⟩ =O2⟨y⟩[y�L′⟨v′⟩].
Sub-cases:
– O3 ∥ ⟨·⟩[y�L′⟨v′⟩]. Then there exists a double contextO such thatO⟨⟨·⟩,O2⟨y⟩⟩ =

O3 andO⟨L⟨t′⟩,⟨·⟩⟩ = ⟨·⟩[y�L′⟨v′⟩]. Cases of the position ofL⟨t′⟩ in ⟨·⟩[y�L′⟨v′⟩]:
∗ L⟨t′⟩ is a subterm of L′ . Then there exists a double context O′ such
that O′⟨L⟨t′⟩,⟨·⟩⟩ = L′ and O⟨⟨·⟩1,⟨·⟩2⟩ = ⟨·⟩2[y�O′⟨⟨·⟩1,v′⟩]. Let L′′ B
O′⟨t′[x�L⟨v⟩],⟨·⟩⟩. Then:

t =O1⟨

=O2⟨y⟩[y�L′′⟨v′⟩]︷ ︸︸ ︷
O⟨t′[x�L⟨v⟩],O2⟨y⟩⟩⟩ O1⟨

=O2⟨y⟩[y�L′⟨v′⟩]︷ ︸︸ ︷
O⟨L⟨t′⟩,O2⟨y⟩⟩⟩ = r

O1⟨O′⟨t′[x�L⟨v⟩],O2⟨v′⟩[y�v′]⟩︸ ︷︷ ︸
=L′′⟨O2⟨v′⟩[y�v′]⟩

⟩ O1⟨O′⟨L⟨t′⟩,O2⟨v′⟩[y�v′]⟩︸ ︷︷ ︸
=L′⟨O2⟨v′⟩[y�v′]⟩

⟩ = u

ogc

oe oe

ogc

∗ L⟨t′⟩ is of the form L1⟨v′⟩ with L′ = L2⟨L1⟩ for some L2, and we have
O⟨⟨·⟩1,⟨·⟩2⟩ = ⟨·⟩2[y�L2⟨⟨·⟩1⟩]. It is easy to see that t′ is of the form
L3⟨v′⟩ with L⟨L3⟩ = L1. Let L′′ = L2⟨L3[x�L⟨v⟩]⟩. Then:

t =O1⟨

=O2⟨y⟩[y�L′′⟨v′⟩]︷ ︸︸ ︷
O⟨t′[x�L⟨v⟩],O2⟨y⟩⟩⟩ O1⟨

=O2⟨y⟩[y�L′⟨v′⟩]︷ ︸︸ ︷
O⟨L⟨t′⟩,O2⟨y⟩⟩⟩ = r

O1⟨L2⟨L3⟨O2⟨v′⟩[y�v′]⟩[x�L⟨v⟩]⟩︸ ︷︷ ︸
=L′′⟨O2⟨v′⟩[y�v′]⟩

⟩ O1⟨L2⟨L⟨L3⟨O2⟨v′⟩[y�v′]⟩⟩⟩︸ ︷︷ ︸
=L′⟨O2⟨v′⟩[y�v′]⟩

⟩ = u

ogc

oe oe

ogc

149

– ⟨·⟩[y�L′⟨v′⟩] ≺ O3. That is, O3 = O4[y�L′⟨v′⟩] for some O4. We have then
O4⟨L⟨t′⟩⟩ =O2⟨y⟩. Sub-cases:
∗ O4 ∥ O2. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O4
and O⟨L⟨t′⟩,⟨·⟩⟩ =O2. Then:

t =O1⟨O⟨t′[x�L⟨v⟩], y⟩[y�L′⟨v′⟩]⟩ O1⟨O⟨L⟨t′⟩, y⟩[y�L′⟨v′⟩]⟩ = r

O1⟨L′⟨O⟨t′[x�L⟨v⟩],v′⟩[y�v′]⟩⟩ O1⟨L′⟨O⟨L⟨t′⟩,v′⟩[y�v′]⟩⟩ = u

ogc

oe oe

ogc

∗ O4 ≺O2. That is,O2 =O4⟨O5⟩ for someO5. We have then L⟨t′⟩ =O5⟨y⟩.
Sub-cases:

(a) y is a subterm of L. Then there exists a double context O such that
O⟨⟨·⟩, y⟩ = L and O⟨t′,⟨·⟩⟩ =O5. Then:

t =O1⟨O4⟨t′[x�O⟨v,y⟩]⟩[y�L′⟨v′⟩]⟩ O1⟨O4⟨O⟨t′, y⟩⟩[y�L′⟨v′⟩]⟩ = r

O1⟨L′⟨O4⟨t′[x�O⟨v,v′⟩]⟩[y�v′]⟩⟩ O1⟨L′⟨O4⟨O⟨t′,v′⟩⟩[y�v′]⟩⟩ = u

ogc

oe oe

ogc

(b) y is a subterm of t′ . That is, t′ = O6⟨y⟩ for some O6, and we have
O5 = L⟨O6⟩. Then:

t =O1⟨O4⟨O6⟨y⟩[x�L⟨v⟩]⟩[y�L′⟨v′⟩]⟩ O1⟨O4⟨L⟨O6⟨y⟩⟩⟩[y�L′⟨v′⟩]⟩ = r

O1⟨L′⟨O4⟨O6⟨v′⟩[x�L⟨v⟩]⟩[y�v′]⟩⟩ O1⟨L′⟨O4⟨L⟨O6⟨v′⟩⟩⟩[y�v′]⟩⟩ = u

ogc

oe oe

ogc

∗ O2 ≺ O4. That is, O4 = O2⟨O5⟩ for some O5. Assume that O5 is non-
empty (the case whereO5 = ⟨·⟩, that is,O2 =O4, has already been treated).
We have O5⟨L⟨t′⟩⟩ = y, which is impossible since O5 is non-empty.

– O3 ≺ ⟨·⟩[y�L′⟨v′⟩]. That is, ⟨·⟩[y�L′⟨v′⟩] =O3⟨O4⟩ for someO4. Then either
O3 or O4 is empty. Both cases have already been treated.

A.3 Proof of Proposition 36
Assume that t =O1⟨O2⟨x⟩[x�L⟨v⟩]⟩ →oenu O1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = r→ocore u where v is an
abstraction. The situation is then as follows: We now consider different cases of the reduction
r→ocore u.

1. r =O3⟨L′⟨λy.q⟩p⟩ →om O3⟨L′⟨q[y�p]⟩⟩ = u. The situation is then as follows:

t =O1⟨O2⟨x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = r =O3⟨L′⟨λy.q⟩p⟩

O3⟨L′⟨q[y�p]⟩⟩ = u

oenu

om

150

Cases of the positioning ofO3with respect to the other shape of r , namelyO1⟨L⟨O2⟨v⟩[x�v]⟩⟩:

• O3 ∥ O1. Then there exists a double context O such that O⟨⟨·⟩,L′⟨λy.q⟩p⟩ = O1
and O⟨L⟨O2⟨v⟩[x�v]⟩,⟨·⟩⟩ =O3. We have:

t =O⟨O2⟨x⟩[x�L⟨v⟩],L′⟨λy.q⟩p⟩ O⟨L⟨O2⟨v⟩[x�v]⟩,L′⟨λy.q⟩p⟩ = r

O⟨O2⟨x⟩[x�L⟨v⟩],L′⟨q[y�p]⟩⟩ O⟨L⟨O2⟨v⟩[x�v]⟩,L′⟨q[y�p]⟩⟩ = u

oenu

om om
oenu

Where the bottom side of the diagram is non-useful because O⟨O2,L
′⟨λy.q⟩p⟩

non-useful implies O⟨O2,L
′⟨q[y�p]⟩⟩ non-useful by Lemma 22.

• O1 ≺ O3. That is, O3 = O1⟨O′3⟩ for some O′3. We have then L⟨O2⟨v⟩[x�v]⟩ =
O′3⟨L′⟨λy.q⟩p⟩. Sub-cases:

– O′3 ∥ L. Then there exists a double context O such that O⟨⟨·⟩,L′⟨λy.q⟩p⟩ = L
and O⟨O2⟨v⟩[x�v],⟨·⟩⟩ =O′3. Let L′′ BO⟨⟨·⟩,L′⟨q[y�p]⟩⟩. Then:

t =O1⟨O2⟨x⟩[x�

=L⟨v⟩︷ ︸︸ ︷
O⟨v,L′⟨λy.q⟩p⟩]⟩ O1⟨

=L⟨O2⟨v⟩[x�v]⟩︷ ︸︸ ︷
O⟨O2⟨v⟩[x�v],L′⟨λy.q⟩p⟩⟩ = r

O1⟨O2⟨x⟩[x�O⟨v,L′⟨q[y�p]⟩⟩︸ ︷︷ ︸
=L′′⟨v⟩

]⟩ O1⟨O⟨O2⟨v⟩[x�v],L′⟨q[y�p]⟩⟩︸ ︷︷ ︸
=L′′⟨O2⟨v⟩[x�v]⟩

⟩ = u

oenu

om om

oenu

and clearly the bottom step is non-useful because the top step is.
– L ≺ O′3. Then in fact L⟨⟨·⟩[x�v]⟩ ≺ O′3, that is, O

′
3 = L⟨O4[x�v]⟩ for some

O4. We have then O2⟨v⟩ =O4⟨L′⟨λy.q⟩p⟩. Sub-cases:
∗ O4 ∥O2. Then there exists a double contextO such thatO⟨⟨·⟩,L′⟨λy.q⟩p⟩ =
O2 and O⟨v,⟨·⟩⟩ =O4. Then:

t =O1⟨O⟨x,L′⟨λy.q⟩p⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨v,L′⟨λy.q⟩p⟩[x�v]⟩⟩ = r

O1⟨O⟨x,L′⟨q[y�p]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨v,L′⟨q[y�p]⟩⟩[x�v]⟩⟩ = u

oenu

om om
oenu

Where the bottom side of the diagram is non-useful becauseO1⟨O⟨⟨·⟩,L′⟨λy.q⟩p⟩⟩
non-useful implies O1⟨O⟨⟨·⟩,L′⟨q[y�p]⟩⟩⟩ non-useful by Lemma 22.
∗ O2 ≺ O4. Impossible, because then L′⟨λy.q⟩p would occur in v, that is,
under abstraction, against the fact that O3 is open.
∗ O4 ≺O2. Sub-cases:
(a) O2 =O4⟨L′⟨λy.q⟩O5⟩ for some O5. Then:

t =O1⟨O4⟨L′⟨λy.q⟩O5⟨x⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨L′⟨λy.q⟩O5⟨v⟩⟩[x�v]⟩⟩ = r

O1⟨O4⟨L′⟨q[y�O5⟨x⟩]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨L′⟨q[y�O5⟨v⟩]⟩⟩[x�v]⟩⟩ = u

oenu

om om
oenu

151

By Lemma 6, L′⟨λy.q⟩O5 non-useful implies L′⟨q[y�O5]⟩ non-useful.
Then by Lemma 10,O1⟨O4⟨L′⟨λy.q⟩O5⟩⟩ non-useful impliesO1⟨O4⟨L′⟨q[y�O5]⟩⟩⟩
non-useful, justifying the bottom step of the diagram.

(b) O2 =O4⟨O5p⟩ for some O5 such that O5⟨v⟩ = L′⟨λy.q⟩. Sub-cases:
- L′ ≺O5 or O5 ≺ L′ . Then necessarily L′ =O5 and v = λy.q, but this
is impossible, because then the step:

t︷ ︸︸ ︷
O1⟨O4⟨L′⟨x⟩p⟩[x�L⟨λy.q⟩]⟩ →oenu

r︷ ︸︸ ︷
O1⟨O4⟨L′⟨λy.q⟩p⟩[x�L⟨λy.q⟩]⟩

would be useful, against the hypothesis.
- L′ ∥O5. Then there exists a double contextO such thatO⟨⟨·⟩,λy.q⟩ =
O5 and O⟨v,⟨·⟩⟩ = L′ . Let L′′ BO⟨x,⟨·⟩⟩. Then:

t =O1⟨O4⟨

L′′⟨λy.q⟩︷ ︸︸ ︷
O⟨x,λy.q⟩p⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨

L′⟨λy.q⟩︷ ︸︸ ︷
O⟨v,λy.q⟩p⟩[x�v]⟩⟩ = r

O1⟨O4⟨O⟨x,q[y�p]⟩︸ ︷︷ ︸
L′′⟨q[y�p]⟩

⟩[x�L⟨v⟩]⟩ O1⟨L⟨O4⟨O⟨v,q[y�p]⟩︸ ︷︷ ︸
L′⟨q[y�p]⟩

⟩[x�v]⟩⟩ = u

oenu

om om

oenu

Let us show that the bottom step is indeed non-useful. Since the top
step is non-useful, O1⟨O4⟨O⟨⟨·⟩,λy.q⟩p⟩⟩ is non-useful. Therefore,
O⟨⟨·⟩,λy.q⟩ is non-useful. Then by Lemmas 22 and 10,O1⟨O4⟨O⟨⟨·⟩,q[y�p]⟩⟩⟩
is non-useful.

– O′3 ≺ L. Since inside O′3 there is the application L′⟨λy.q⟩p, it can only be
L =O′3. But then the case is impossible, because inside L there is O2⟨v⟩[x�v],
which is not an application.

• O3 ≺ O1. Then in fact O3⟨⟨·⟩p⟩ ≺ O1, that is, O1 = O3⟨O′1p⟩ for some O′1. We
have then O′1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = L′⟨λy.q⟩. Sub-cases:
– O′1 ∥ L′ . Then there exists a double context O such that O⟨λy.q,⟨·⟩⟩ =O′1 and

O⟨⟨·⟩,O2⟨x⟩[v�L⟨v⟩]⟩ = L′ . Let L′′ B O⟨⟨·⟩,O2⟨x⟩[x�L⟨v⟩]⟩. The diagram
closes as follows:

t =O3⟨

=L′′⟨λy.q⟩︷ ︸︸ ︷
O⟨λy.q,O2⟨x⟩[x�L⟨v⟩]⟩p⟩ O3⟨

=L′⟨λy.q⟩︷ ︸︸ ︷
O⟨λy.q,L⟨O2⟨v⟩[x�v]⟩⟩p⟩ = r

O3⟨O⟨q[y�p],O2⟨x⟩[x�L⟨v⟩]⟩︸ ︷︷ ︸
=L′′⟨q[y�p]⟩

⟩ O3⟨O⟨q[y�p],L⟨O2⟨v⟩[x�v]⟩⟩︸ ︷︷ ︸
=L′⟨q[y�p]⟩

⟩ = u

oenu

om om

oenu

Let us show that the bottom step is indeed non-useful. Since the top step is non-
useful, O⟨λy.q,O2⟩ is non-useful. Then OBO⟨q[y�p],O2⟩ is non-useful by
Lemma 22. Since O is not a substitution context, plugging it in O3 gives a
non-useful context by Lemma 10.

– L′ ≺O′1. This case is impossible, because inside L′ there is λy.q so that it must
be thatO′1 = L′ but then the contentO2⟨v⟩[x�v] ofO′1 does not coincide with
the content of L′ .

152

– O′1 ≺ L′ . Then L′ =O′1⟨L′′⟩ for some L′′ . Cases of L′′ and L:
∗ L′′ ≺ L. This case is impossible, for the same reason as case L′ ≺O′1 above.
∗ L ≺ L′′ . Then in fact L⟨⟨·⟩[x�v]⟩ ≺ L′′ , because L′′ contains an abstraction.
Then L′′ = L⟨L′′′[x�v]⟩ for some L′′′ . Now, one should analyze the various
possibilities for L′′′ and O2, but such an analysis is an instance of what is
done above for O4 and O2.

2. r =O3⟨O4⟨y⟩[y�L′⟨v′⟩]⟩ →oeu O3⟨L′⟨O4⟨v′⟩[y�v′]⟩⟩ = u where v′ is an abstraction.
The situation is then as follows:

t =O1⟨O2⟨x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O2⟨v⟩[x�v]⟩⟩ = r =O3⟨O4⟨y⟩[y�L′⟨v′⟩]⟩

O3⟨L′⟨O4⟨v′⟩[y�v′]⟩⟩ = u

oenu

oeu

Cases of the positioning ofO3with respect to the other shape of r , namelyO1⟨L⟨O2⟨v⟩[x�v]⟩⟩:

• O3 ∥O1. Then there exists a double context such that O⟨⟨·⟩,L⟨O2⟨v⟩[x�v]⟩⟩ =O3
and O⟨O4⟨y⟩[y�L′⟨v′⟩],⟨·⟩⟩ =O1. We have:

t =O⟨O4⟨y⟩[y�L′⟨v′⟩],O2⟨x⟩[x�L⟨v⟩]⟩ O⟨O4⟨y⟩[y�L′⟨v′⟩],L⟨O2⟨v⟩[x�v]⟩⟩ = r

O⟨L′⟨O4⟨v′⟩[y�v′]⟩,O2⟨x⟩[x�L⟨v⟩]⟩ O⟨L′⟨O4⟨v′⟩[y�v′]⟩,L⟨O2⟨v⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Let O′ =O⟨O4,⟨·⟩⟩. Since the right
step is useful,O′⟨⟨·⟩,L⟨O2⟨v⟩[x�v]⟩⟩ is useful. Then by Lemma 22,O′⟨⟨·⟩,O2⟨x⟩[x�L⟨v⟩]⟩
is useful. Now let us show that the bottom step is indeed non-useful. Let O′′ =
O⟨⟨·⟩,O2⟩. Since the top step is non-useful,O′′⟨O4⟨y⟩[y�L′⟨v′⟩],⟨·⟩⟩ is non-useful.
Then by Lemma 22, O′′⟨L′⟨O4⟨v′⟩[y�v′]⟩,⟨·⟩⟩ is non-useful.

• O1 ≺ O3. That is, O3 = O1⟨O5⟩ for some O5. We have then L⟨O2⟨v⟩[x�v]⟩ =
O5⟨O4⟨y⟩[y�L′⟨v′⟩]⟩. Sub-cases:
– O5 ∥ L. Then there exists a double contextO such thatO⟨⟨·⟩,O4⟨y⟩[y�L′⟨v′⟩]⟩ =

L and O⟨O2⟨v⟩[x�v],⟨·⟩⟩ =O5. Let L′′ BO⟨⟨·⟩,L′⟨O4⟨v′⟩[y�v′]⟩⟩. Then:

t =O1⟨O2⟨x⟩[x�O⟨v,O4⟨y⟩[y�L′⟨v′⟩]⟩]⟩ O1⟨O⟨O2⟨v⟩[x�v],O4⟨y⟩[y�L′⟨v′⟩]⟩⟩ = r

O1⟨O2⟨x⟩[x�O⟨v,L′⟨O4⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
L′′⟨v⟩

]⟩ O1⟨O⟨O2⟨v⟩[x�v],L′⟨O4⟨v′⟩[y�v′]⟩⟩︸ ︷︷ ︸
L′′⟨O2⟨v⟩[x�v]⟩

⟩ = u

oenu

oeu oeu

oenu

The bottom step is clearly non-useful as O1⟨O2⟩ is non-useful by assumption.
Let us show that the left step is indeed useful. Since the right step is useful,
O1⟨O⟨O2⟨v⟩[x�v],O4⟩⟩ is useful. Then by Lemma 10, O⟨O2⟨v⟩[x�v],O4⟩ is
useful (it cannot be a substitution context since O⟨⟨·⟩,O4⟨y⟩[y�L′⟨v′⟩]⟩ = L).
Then by Lemma 22, O⟨v,O4⟩ is useful, and so is O1⟨O2⟨x⟩[x�O⟨v,O4⟩]⟩.

153

– L =O5. We have O2⟨v⟩[x�v] =O4⟨y⟩[y�L′⟨v′⟩]. Therefore, v′ = v, L′ = ⟨·⟩,
x = y, and O2⟨v⟩ = O4⟨x⟩. Then there exists a double context O such that
O⟨⟨·⟩,x⟩ =O2 and O⟨v,⟨·⟩⟩ =O4. Then:

t =O1⟨O⟨x,x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨v,x⟩[x�v]⟩⟩ = r

O1⟨L⟨O⟨x,v⟩[x�v]⟩⟩ O1⟨L⟨O⟨v,v⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O1⟨L⟨O⟨v,⟨·⟩⟩⟩⟩ is useful. Then by Lemmas 22 and 10, O1⟨O⟨x,⟨·⟩⟩⟩ is useful.
Now let us show that the bottom step is indeed non-useful. Since the top
step is non-useful, O1⟨O⟨⟨·⟩,x⟩⟩ is non-useful. Then by Lemmas 22 and 10,
O1⟨L⟨O⟨⟨·⟩,v⟩⟩⟩ is non-useful.

– L ≺O5 and L ,O5. Then in fact L⟨⟨·⟩[x�v]⟩ ≺O5. That is,O5 = L⟨O6[x�v]⟩
for some O6. We have O2⟨v⟩ =O6⟨O4⟨y⟩[y�L′⟨v′⟩]⟩. Sub-cases:
∗ O6 ∥ O2. Then there exists a double context O such that O⟨⟨·⟩,v⟩ = O6
and O⟨O4⟨y⟩[y�L′⟨v′⟩],⟨·⟩⟩ =O2. We have:

t =O1⟨O⟨O4⟨y⟩[y�L′⟨v′⟩],x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨O4⟨y⟩[y�L′⟨v′⟩],v⟩[x�v]⟩⟩ = r

O1⟨O⟨L′⟨O4⟨v′⟩[y�v′]⟩,x⟩[x�L⟨v⟩]⟩ O1⟨L⟨O⟨L′⟨O4⟨v′⟩[y�v′]⟩,v⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O1⟨L⟨O⟨O4,v⟩⟩[x�v]⟩ is useful. By Lemma 10, O1⟨O⟨O4,v⟩⟩ is useful.
Then by Lemmas 22 and 10, a O1⟨O⟨O4,x⟩[x�L⟨v⟩]⟩ is useful. Now let us
show that the bottom step is indeed non-useful. Since the top step is non-
useful, O1⟨O⟨O4⟨y⟩[y�L′⟨v′⟩],⟨·⟩⟩⟩ is non-useful. Then by Lemmas 22
and 10, O1⟨O⟨L′⟨O4⟨v′⟩[y�v′]⟩,⟨·⟩⟩⟩ is non-useful.
∗ O2 ≺ O6. Impossible, because then O4⟨y⟩[y�L′⟨v′⟩] would occur in v,
that is, under abstraction, against the fact that O3 is open.
∗ O6 ≺O2. ThenO2 =O6⟨O7⟩ for someO7. We haveO7⟨v⟩ =O4⟨y⟩[y�L′⟨v′⟩].
Sub-cases:

(a) v is a subterm of O4. Then there exists a double context O such that
O⟨⟨·⟩, y⟩[y�L′⟨v′⟩] =O7 and O⟨v,⟨·⟩⟩ =O4. We have:

t =O1⟨O6⟨O⟨x,y⟩[y�L′⟨v′⟩]⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O⟨v,y⟩[y�L′⟨v′⟩]⟩[x�v]⟩⟩ = r

O1⟨O6⟨L′⟨O⟨x,v′⟩[y�v′]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨L′⟨O⟨v,v′⟩[y�v′]⟩⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step indeed useful. Since the right step is useful,
O1⟨L⟨O6⟨O⟨v,⟨·⟩⟩⟩[x�v]⟩⟩ is useful. By Lemma 10, O1⟨O6⟨O⟨v,⟨·⟩⟩⟩⟩
is useful. Then by Lemmas 22 and 10, O1⟨O6⟨O⟨x,⟨·⟩⟩⟩[x�L⟨v⟩]⟩ is
useful. Now let us show that the bottom step is indeed non-useful. Since
the top step is non-useful, O1⟨O6⟨O⟨⟨·⟩, y⟩[y�L′⟨v′⟩]⟩⟩ is non-useful.
By Lemma 10,O1⟨O6⟨O⟨⟨·⟩, y⟩⟩⟩ is non-useful. Then by Lemmas 22 and
10, O1⟨O6⟨L′⟨O⟨⟨·⟩,v′⟩⟩[y�v′]⟩⟩ is non-useful.

154

(b) v is a subterm of L′ . Then there exists a double context O such that
O4⟨y⟩[y�O⟨⟨·⟩,v′⟩] =O7 and O⟨v,⟨·⟩⟩ = L′ . By Lemma 22, O⟨x,⟨·⟩⟩ =
L′′ for some L′′ . Then:

t =O1⟨O6⟨O4⟨y⟩[y�O⟨x,v′⟩]⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O4⟨y⟩[y�O⟨v,v′⟩]⟩[x�v]⟩⟩ = r

O1⟨O6⟨O⟨x,O4⟨v′⟩[y�v′]⟩⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O⟨v,O4⟨v′⟩[y�v′]⟩⟩[x�v]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O1⟨L⟨O6⟨O4⟩[x�v]⟩⟩ is useful. By Lemma 10, O1⟨O6⟨O4⟩[x�L⟨v⟩]⟩
is useful. Now let us show that the bottom step is indeed non-useful.
Since the top step is non-useful, O1⟨O6⟨O4⟨v′⟩[v′�O⟨⟨·⟩,v′⟩]⟩⟩ is non-
useful. Then O⟨⟨·⟩,v′⟩ is non-useful. It is clear that O⟨⟨·⟩,v′⟩ is not
a substitution context as O⟨v,⟨·⟩⟩ = L′ . Then by Lemmas 22 and 10,
O1⟨O6⟨O⟨⟨·⟩,O4⟨v′⟩[y�v′]⟩⟩⟩ is non-useful.

(c) v = v′ with O7 =O4⟨y⟩[y�L′]. We have:

t =O1⟨O6⟨O4⟨y⟩[y�L′⟨x⟩]⟩[x�L⟨v⟩]⟩ O1⟨L⟨O6⟨O4⟨y⟩[y�L′⟨v⟩]⟩[x�v]⟩⟩ = r

O1⟨O6⟨L′⟨O4⟨x⟩[y�x]⟩⟩[x�L⟨v⟩]⟩

O1⟨L⟨O6⟨L′⟨O4⟨v⟩[y�x]⟩⟩[x�v]⟩⟩ O1⟨L⟨O6⟨L′⟨O4⟨v⟩[y�v]⟩⟩[x�v]⟩⟩ = u

oenu

oevar

oeu

oeu

oenu

Let us show that the second left step is indeed useful. Since the right step
is useful, O1⟨L⟨O6⟨O4⟩[x�v]⟩⟩ is useful. By Lemma 10, O1⟨O6⟨O4⟩⟩
is useful. Then, by Lemma 10 again, O1⟨O6⟨L′⟨O4[y�x]⟩⟩⟩ is useful.
The bottom step is clearly non-useful by the definition of non-useful
contexts.

– O5 ≺ L andL ,O5. Then in factO5⟨⟨·⟩[y�L′⟨v′⟩]⟩ ≺ L, that is , L =O5⟨O6[y�L′⟨v′⟩]⟩
for some O6. We have O6⟨O2⟨v⟩[x�v]⟩ = O4⟨y⟩. Also note that O5 and O6
are both substitution contexts. Sub-cases:
∗ O6 ∥ O4. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O6
and O⟨O2⟨v⟩[x�v],⟨·⟩⟩ =O4. We have:

t =O1⟨O2⟨x⟩[x�O5⟨O⟨v,y⟩[y�L′⟨v′⟩]⟩]⟩ O1⟨O5⟨O⟨O2⟨v⟩[x�v], y⟩[y�L′⟨v′⟩]⟩⟩ = r

O1⟨O2⟨x⟩[x�O5⟨L′⟨O⟨v,v′⟩[y�v′]⟩⟩]⟩ O1⟨O5⟨L′⟨O⟨O2⟨v⟩[x�v],v′⟩[y�v′]⟩⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is
useful, O1⟨O5⟨O⟨O2⟨v⟩[x�v],⟨·⟩⟩⟩⟩ is useful. By Lemmas 22 and 10,
O1⟨O5⟨O⟨v,⟨·⟩⟩⟩⟩ is useful. Note that O⟨v,⟨·⟩⟩ is not a substitution con-
text since O⟨⟨·⟩, y⟩ = O6 is a substitution context. Then by Lemma 10,
O⟨v,⟨·⟩⟩ is useful and so isO1⟨O2⟨x⟩[x�O5⟨O⟨v,⟨·⟩⟩⟩]⟩. The bottom step
is clearly non-useful since O1⟨O2⟩ is non-useful by assumption.
∗ O4 ≺O6. Clearly impossible.

155

∗ O6 ≺ O4. That is, O4 = O6⟨O7⟩ for some O7. We have O2⟨v⟩[x�v] =
O7⟨y⟩, which is impossible as y is bound in L.

• O3 ≺ O1. That is, O1 = O3⟨O5⟩ for some O5. We have O5⟨L⟨O2⟨v⟩[x�v]⟩⟩ =
O4⟨y⟩[y�L′⟨v′⟩]. Sub-cases:
– O5 ∥ ⟨·⟩[y�L′⟨v′⟩]. Then the subterm L⟨O2⟨v⟩[x�v]⟩ has to be a subterm of L′ ,

which implies the existence of a double contextO such thatO⟨L⟨O2⟨v⟩[x�v]⟩,⟨·⟩⟩ =
L′ and O4⟨y⟩[y�O⟨⟨·⟩,v′⟩] =O5. We have:

t =O3⟨O4⟨y⟩[y�O⟨O2⟨x⟩[x�L⟨v⟩],v′⟩]⟩ O3⟨O4⟨y⟩[y�O⟨L⟨O2⟨v⟩[x�v]⟩,v′⟩]⟩ = r

O3⟨O⟨O2⟨x⟩[x�L⟨v⟩],O4⟨v′⟩[y�v′]⟩⟩ O3⟨O⟨L⟨O2⟨v⟩[x�v]⟩,O4⟨v′⟩[y�v′]⟩⟩ = u

oenu

oeu oeu
oenu

The left step is clearly useful as O3⟨O4⟩ is useful by assumption. Let us
show that the bottom step is indeed non-useful. Since the top step is non-
useful, O⟨O2,v

′⟩ is non-useful. By Lemma 22, O⟨O2,O4⟨v′⟩[y�v′]⟩ is non-
useful. Moreover, O⟨O2,O4⟨v′⟩[y�v′]⟩ is not a substitution context since
O⟨L⟨O2⟨v⟩[x�v]⟩,⟨·⟩⟩ = L′ . Then by Lemma 10, O3⟨O⟨O2,O4⟨v′⟩[y�v′]⟩⟩ is
non-useful.

– ⟨·⟩[y�L′⟨v′⟩] ≺ O5. Then there exists O6 such that O5 = O6[y�L′⟨v′⟩]. We
have O6⟨L⟨O2⟨v⟩[x�v]⟩⟩ =O4⟨y⟩. Sub-cases:
∗ O6 ∥ O4. Then there exists a double context O such that O⟨⟨·⟩, y⟩ = O6
and O⟨L⟨O2⟨v⟩[x�v]⟩,⟨·⟩⟩ =O4. We have:

t =O3⟨O⟨O2⟨x⟩[x�L⟨v⟩], y⟩[y�L′⟨v′⟩]⟩ O3⟨O⟨L⟨O2⟨v⟩[x�v]⟩, y⟩[y�L′⟨v′⟩]⟩ = r

O3⟨L′⟨O⟨O2⟨x⟩[x�L⟨v⟩],v′⟩[y�v′]⟩⟩ O3⟨L′⟨O⟨L⟨O2⟨v⟩[x�v]⟩,v′⟩[y�v′]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O3⟨O⟨L⟨O2⟨v⟩[x�v]⟩,⟨·⟩⟩⟩ is useful. By Lemmas 22 and 10,O3⟨O⟨O2⟨x⟩[x�L⟨v⟩],⟨·⟩⟩⟩
is useful. Now let us show that the bottom step is indeed non-useful. Since
the top step is non-useful, O3⟨O⟨O2, y⟩[y�L′⟨v′⟩]⟩ is non-useful. By Lem-
mas 22 and 10, O3⟨L′⟨O⟨O2,v

′⟩[y�v′]⟩⟩ is non-useful.
∗ O4 ≺O6. Clearly impossible.
∗ O6 ≺O4. That is, O4 =O6⟨O7⟩ for some O7. We have L⟨O2⟨v⟩[x�v]⟩ =
O7⟨y⟩. Sub-cases:

(a) y is a subterm of L. Then there exists a double context O such that
O⟨⟨·⟩, y⟩ = L and O⟨O2⟨v⟩[x�v],⟨·⟩⟩ =O7. We have:

t =O3⟨O6⟨O2⟨x⟩[x�O⟨v,y⟩]⟩[y�L′⟨v′⟩]⟩ O3⟨O6⟨O⟨O2⟨v⟩[x�v], y⟩⟩[y�L′⟨v′⟩]⟩

O3⟨L′⟨O6⟨O2⟨x⟩[x�O⟨v,v′⟩]⟩[y�v′]⟩⟩ O3⟨L′⟨O6⟨O⟨O2⟨v⟩[x�v],v′⟩⟩[y�v′]⟩⟩ = u

oenu

oeu oeu
oenu

Let us show that the left step is indeed useful. Since the right step is useful,
O3⟨O6⟨O⟨O2⟨v⟩[x�v],⟨·⟩⟩⟩⟩ is useful. Note that O⟨O2⟨v⟩[x�v],⟨·⟩⟩

156

is not a substitution context since O⟨⟨·⟩, y⟩ = L. Then by Lemma 10,
O⟨O2⟨v⟩[x�v],⟨·⟩⟩ is useful. By Lemma 22, O⟨v,⟨·⟩⟩ is useful, and so is
O3⟨O6⟨O2⟨x⟩[x�O⟨v,⟨·⟩⟩]⟩⟩. Now let us show that the bottom step is in-
deed non-useful. Since the top step is non-useful,O3⟨O6⟨O2⟩[y�L′⟨v′⟩]⟩
is non-useful. Then by Lemma 10,O3⟨L′⟨O6⟨O2⟩[y�v′]⟩⟩ is non-useful.

(b) y is a subterm of O2. Then there exists a double context O such that
O⟨⟨·⟩, y⟩ =O2 and L⟨O⟨v,⟨·⟩⟩[x�v]⟩ =O7. We have:

t =O3⟨O6⟨O⟨x,y⟩[x�L⟨v⟩]⟩[y�L′⟨v′⟩]⟩ O3⟨O6⟨L⟨O⟨v,y⟩[x�v]⟩⟩[y�L′⟨v′⟩]⟩ = r

O3⟨L′⟨O6⟨O⟨x,v′⟩[x�L⟨v⟩]⟩[y�v′]⟩⟩ O3⟨L′⟨O6⟨L⟨O⟨v,v′⟩[x�v]⟩⟩[y�v′]⟩⟩ = u

oenu

oeu oeu

oenu

Let us show that the left step is indeed useful. Since the right step
is useful, O3⟨O6⟨L⟨O⟨v,⟨·⟩⟩[x�v]⟩⟩⟩ is useful. Then by Lemmas 22
and 10, O3⟨O6⟨O⟨x,⟨·⟩⟩⟩[x�L⟨v⟩]⟩ is useful. Now let us show that
the bottom step is indeed non-useful. Since the top step is non-useful,
O3⟨O6⟨O⟨⟨·⟩, y⟩⟩[y�L′⟨v′⟩]⟩ is non-useful. Then by Lemmas 22 and 10,
O3⟨L′⟨O6⟨O⟨·⟩v′⟩[y�v′]⟩⟩ is non-useful.

– O5 ≺ ⟨·⟩[y�L′⟨v′⟩]. Sub-cases:
∗ O5 = ⟨·⟩. Then O1 = O3 and this sub-case is treated in the case where
O1 ≺O3.
∗ O5 = ⟨·⟩[y�L′⟨v′⟩]. This sub-case is treated in the casewhere ⟨·⟩[y�L′⟨v′⟩] ≺
O5.

3. r = O3⟨O4⟨y⟩[y�L′⟨z⟩]⟩ →oevar O3⟨L′⟨O4⟨z⟩[y�z]⟩⟩ = u. We can proceed as in the
case of eu. Note that the most complex form does not exist in this case.

157

158

Index

α-equivalence, 35
β-reduction, 35
λ-calculus, 33
ILLF⊃,⊸, 112
ILL⊃,⊸, 111
LJF⊃, 11
LJ, 9
LJF, 11
LJ⊃, 9

atomic sequent, 30

border sequent, 12

call-by-name, 36
call-by-value, 36, 73
compactness, 82
core factorization, 90, 91
core normal forms, 104
cost model, 108
cut-elimination, 20, 120

decide rule, 13
diamond, 34

equality condition, 15
explicit substitution, 37, 49, 56, 81
extension of LJ⊃, 25

inclusion condition, 15
invertible, 3, 4

negative, 11
negative phase, 4
non-invertible, 4
non-useful context, 88
non-useful step, 88

order, 19

polarization, 11
polarized theory, 25
positive, 11
positive λ-calculus, 73
positive phase, 4

reasonable cost model, 83
reduction system, 33

signature, 59
staging zone, 12
storage zone, 12
synthetic inference rule, 14, 118
synthetic side condition, 15

target, 15
two-phase structure, 4, 13

useful context, 88
useful sharing, 83
useful step, 88

value substitution calculus, 83

159

	Résumé
	Abstract
	Introduction
	I Preliminaries
	Structural Proof Theory
	Gentzen's sequent calculus LJ
	Focused proof system LJF
	Synthetic inference rules
	Cut-elimination of LJF
	Soundness and completeness of LJF
	Extending LJ
	Restricting to atomic sequents

	Reduction systems and -calculus
	Reduction systems
	-calculus
	Evaluation: call-by-name and call-by-value
	Explicit substitution

	II Proofs as terms
	Polarizations, structure of proofs, and term annotations
	Polarizations and structure of proofs
	Annotations and term representation
	Cut-elimination and (meta-level) substitution
	Positive to negative
	Encodings of untyped -terms
	Aspects and related works

	Terms and graphs
	Trees and graphs
	Equivalence on terms with sharing
	-graphs with bodies
	Relating graphs and terms
	Concluding remarks and related works

	III Terms as programs
	Positive lambda-calculus
	Positive lambda-calculus
	Explicit positive lambda-calculus

	Usefulness: relating pos and value substitution calculus
	Sharing and usefulness
	Value substitution calculus (VSC)
	Dissecting ovsc: variable substitutions, useful (and non-useful) steps
	Core factorization via postponement of non-useful steps
	Simulating core ovsc in oxpos
	Core normal forms and termination equivalence
	Concluding remarks

	IV Back to proofs, linearly
	Extending LJF with linearity
	Unfocused proof system ILL,
	Focused proof system ILLF,
	Phases and synthetic inference rules
	Cut-elimination
	Soundness and completeness of ILLF,
	Term representation

	V Conclusion
	Conclusion and future work
	Auxiliary definitions and detailed proofs
	Contexts and double contexts
	Proof of Proposition 33
	Proof of Proposition 36

