
Internship Report – MPRI M2
On First-order Combinatorial Proofs

Jui-Hsuan Wu, supervised by Lutz Straßburger, Inria Saclay

July 1, 2024

General Context

The notion of combinatorial proofs has been introduced by D. Hughes to give a syntax-free represen-
tation of proofs in classical propositional logic. This gives rise to a new approach to the proof identity
problem: ”we say that two proofs are the same if they correspond to the same combinatorial proof”.
Combinatorial proofs have also been introduced in different logical systems such as relevant logic and
modal logics.

Problem Studied

Recently, D. Hughes introduced a version of combinatorial proofs for first-order classical logic. How-
ever, there seem to be a more compact way to represent these combinatorial proofs. During the
internship, I established a relation between fonets, an essential part of combinatorial proofs, and
unification nets, a notion introduced for representing proof nets without certain redundancies. This
relation gives us the idea of proving the completeness and correctness of first-order combinatorial
proofs in a simpler way.

Proposed Contributions

The contributions of my internship are the following: establishing the relation between fonets and
unification nets and giving a new proof of completeness of first-order combinatorial proofs.

Arguments Supporting Their Validity

This gives a shorter and more compact proof of completeness of first-order combinatorial proofs.

Summary and Future Work

After working with the completeness, it should be natural to apply the same idea to the correctness of
first-order combinatorial proofs. We want to establish the equivalence between weakening/contraction
derivations and skew bifibrations. However, the results from the propositional case might not be
sufficient and this problem is much more subtle.

1 Introduction

The notion of combinatorial proofs has been introduced by Dominic Hughes to give a presentation for
proofs in classical propositional logic independent from syntactic proof systems.

My internship aims at giving a simpler proof of the completeness and soundness of first-order com-
binatorial proofs by establishing a relation between first-order combinatorial proofs and the sequent
calculus LK. Before the paper introducing first-order combinatorial proofs, D. Hughes introduced uni-
fication nets which give a compact representation of proof nets for MLL1 that eliminates unnecessary
redundancies. I establish the equivalence between unification nets and first-order nets introduced in
[4].

2 First-order combinatorial proofs and Deep inference

2.1 First-order logic

Definition 2.1. Terms and atoms are generated inductively:

• if f is an n-ary function (resp. predicate) symbol and t1,⋯, tn are terms, then ft1⋯tn is a term
(resp. atom).

We also extend the set of atoms with the logical constants t and f.

Definition 2.2. Formulas are generated inductively:

• atoms are formulas,

• if ϕ and θ are formulas, then ϕ ∨ θ and ϕ ∧ θ are also formulas,

• if ϕ is a formula and x a variable, then ∃xϕ and ∀xϕ are formulas.

We assume that each predicate symbol p has a dual predicate symbol p̄ such that p̄ ≠ p and ¯̄p = p.
We can thus extend the duality to atoms (atomic formulas) with pt1⋯tn = p̄t1⋯tn, f = t and t = f.

We now define ¬ and ⇒ as follows.

Definition 2.3. • ¬(α) = α for each atom α

• ¬(ϕ ∨ θ) = (¬ϕ) ∧ (¬θ), ¬(ϕ ∧ θ) = (¬ϕ) ∨ (¬θ)

• ¬∀xϕ = ∃x¬ϕ, ¬∃xϕ = ∀x¬ϕ

We define ⇒ by ϕ ⇒ θ = (¬ϕ) ∨ θ.

Definition 2.4. We say a formula is rectified if all bound variables are distinct from one another and
from all free variables. For example, (px∧∃y qy)∨∀z rz is rectified but (px∧∃x qx)∨∀y ry is not.

2.2 Graphs

A directed graph (V,E) is a finite set V of vertices and a set E ⊆ V ×V of edges on V . An undirected
graph (V,E) is a finite set V of vertices and a set E of directed edges, i.e., two-element subsets of V .
For a given (directed or undirected) graph G, we write VG and EG for its vertex and edge sets. We
write vw for an edge (v, w) or {v, w}.
Let G = (V,E) and G

′
= (V

′
, E

′
) be two undirected graphs. Without loss of generality, we assume

that the two sets of vertices are disjoint. We now define some operations on them.

2

Definition 2.5. The union G+G
′ is defined as the graph (V ∪ V

′
, E ∪ E

′
)

Definition 2.6. The join G ×G
′ is defined as the graph (V ∪ V

′
, E ∪ E

′ ∪ {vv′∣v ∈ V, v
′ ∈ V

′})
Definition 2.7. A cograph G = (V,E) is a P4-free undirected graph, i.e., for any distinct vertices
v1, v2, v3, v4 ∈ V , the restriction of edges on them is not equal to {v1v2, v2v3, v3v4}
Definition 2.8. Given a graph G = (V,E), a set W ⊆ V induces a matching in G if for all w ∈ W ,
there exists a unique w

′ ∈ W such that ww
′ ∈ E.

Definition 2.9. In a graph G = (V,E), the neighbourhood N(v) of v ∈ V is defined as the set{w∣vw ∈ E}, and a module is a set M ⊆ V such that N(v)\M = N(w)\M for all v, w ∈ M . A module
M is strong if for every module M

′, we have M
′ ⊆ M , M ⊆ M

′ or M
′ ∩M = ∅.

2.3 First-order graphs

Definition 2.10. A cograph is logical if every vertex is labelled by an atom or variable, and it has
at least one atom-labelled vertex. An atom-labelled vertex is called a literal and a variable-labelled
vertex is called a binder. A binder labelled with x is called an x-binder. The scope of a binder b is
the smallest strong module containing at least two vertices, including b.

Example 2.11. Here is an example of logical cograph D =

x px

y qy

Figure 1. A logical cograph.

The scope of the x-binder contains only the vertex labelled by px and itself while the scope of the
y-binder contains all the vertices.

Definition 2.12. In a graph G = (V,E), a binder is existential (resp. universal) it is connected (resp.
disconnected) to every other vertex in its scope.

In Example 2.11, the x-binder is existential and the y-binder is universal.

Definition 2.13. An x-binder is legal if its scope contains at least one literal and no other x-binder.

Definition 2.14. An x-literal is one whose atom contains the variable x. An x-binder binds every
x-literal in its scope.

Definition 2.15. An x-binder is rectified if it is the only x-binder and its scope contains every x-literal.
A fograph is rectified if all of its binders are rectified.

Definition 2.16. A first-order graph or fograph is a logical cograph whose binders are all legal.

It is clear that both binders in Example 2.11 are legal. Hence, D is a fograph.

Definition 2.17. The graph G(A) of a formula A is defined inductively by:

G(a) = ⋅a for every atom a

G(A ∨B) = G(A) +G(B) G(A ∧B) = G(A) ×G(B)

G(∀xA) = ⋅x+G(A) G(∃xA) = ⋅x ×G(A)

Example 2.18. The graphs of the formulas (∃x px) ∨ (∀y qy) and ∀y ((∃x px) ∨ qy) are equal to
the fograph D in Example 2.11.

3

Remark 2.19. G(A) is a fograph for all formula A.

Definition 2.20. The binding graph −→G of a fograph G is the directed graph (VG, {(b, l) ∣ b binds l}).
Example 2.21. The binding graph −→D of the fograph D in Example 2.11 is the following:

x px

y qy

Figure 2. The binding graph of the fograph D.

2.4 Fonets

Definition 2.22. Two atoms are pre-dual if their predicate symbols are dual (e.g. pxy and p̄yz) and
two literals are pre-dual if their labels (atoms) are pre-dual.

Definition 2.23. A linked fograph is a coloured fograph such that:

• every colour, called a link, consists of two pre-dual literals, and

• every literal is t-labelled or in a link.

Definition 2.24. Let G be a linked fograph. The set of links can be seen as a unification problem.
A dualizer of G is an assignment unifying all the links of G.

Remark 2.25. We know that first-order unification is decidable, and there exists a most general unifier
if the unification problem is solvable. Hence, we can define the notion of ”most general dualizer” of a
linked fograph given.

Definition 2.26. Let G be a linked fograph. A dependency is a pair (⋅x, ⋅y) of an existential binder
⋅x and a universal binder ⋅y such that the most general dualizer assigns to x a term containing y. A
leap is either a link or a dependency. The leap graph of G is the graph (VG, LG) where LG is the set
of leaps of G.

Definition 2.27. We say that a set W induces a bimatching in a linked fograph G if W induces a
matching in G and induces a matching in the leap graph of G.

Now we define the notion of fonets.

Definition 2.28. A fonet or first-order net is a linked fograph which has a dualizer but no induced
bimatching.

Example 2.29. Here is a fonet:

x px

y qy

z

pz

qfz

Figure 3. A fonet.

4

2.5 Skew bifibrations

Definition 2.30. A graph homomorphism f : (V,E) → (V
′
, E

′
) is a fibration if for all v ∈ V and

wf(v) ∈ E
′, there exists a unique w̃ such that w̃v ∈ E and f(w̃) = w.

Definition 2.31. An undirected graph homomorphism f : (V,E) → (V
′
, E

′
) is a skew fibration if for

all v ∈ V and wf(v) ∈ E
′, there exists w̃ such that w̃v ∈ E and f(w̃)w ∉ E

′.

Definition 2.32. A fograph homomorphism is a graph homomorphism between the underlying graphs
of the fographs considered.

Definition 2.33. A fograph homomorphism f : G → H is label-preserving if for all v ∈ VG, the label
of v equals the label of f(v) in H, and is existential-preserving if for all existential binder b in G, the
vertex f(b) is an existential binder in H.

Definition 2.34. A skew bifibration is a label-preserving and existential-preserving fograph homo-
morphism f : G → H such that

• f : G → H is a skew fibration

• f :
−→
G →

−→
H is a fibration (on corresponding binding graphs).

Example 2.35. Here is a figure illustrating a skew bifibration:

x px

x

y

py

x

y

py

px

x px

x

y

py

x

y

py

px

Figure 4. A skew bifibration (left) and its binding fibration (right). We use dashed lines for
denoting the map.

2.6 Combinatorial proofs

Definition 2.36. A combinatorial proof of a fograph G is a skew bifibration f : N → G where N is
a fonet.

Definition 2.37. A combinatorial proof of a formula ϕ is a combinatorial proof of its graph G(ϕ).

2.7 MLL1 and Unification nets

2.7.1 MLL1

In MLL1, terms and atoms are defined as the first-order logic.

Definition 2.38. Formulas are generated inductively:

• atoms are formulas,

• if ϕ and θ are formulas, then ϕ` θ and ϕ⊗ θ are formulas,

5

• if ϕ is a formula and x a variable, then ∃xϕ and ∀xϕ are formulas.

A formula ϕ is identified with its formula tree F (ϕ), a directed tree with leaves labelled by atoms
and internal nodes labelled by connectives and quantifiers. A sequent is simply a disjoint union of
formulas. We write comma for disjoint union.

Sequents are proved using the inference rules of MLL1:

ax
⊢ A,¬A

⊢ Γ, A ⊢ ∆,¬A
cut

⊢ Γ,∆

⊢ Γ, A ⊢ ∆, B
⊗

⊢ Γ,∆, A⊗B

⊢ Γ, A,B `
⊢ Γ, A`B

⊢ Γ, A
∀

⊢ Γ,∀xA
(x ∉ fv(Γ))

⊢ Γ, A[t/x]
∃

⊢ Γ,∃xA

We also consider the mix rule:

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆

2.7.2 Unification nets

Definition 2.39. Given a sequent Γ in MLL1 + mix, we define links as previously. A linking on Γ
is a set of disjoint links whose union contains each atom and unit of Γ.

Definition 2.40. Let λ be a unifiable linking on a sequent Γ = ϕ1,⋯, ϕn which can be seen as the
formula ϕ = ϕ1`⋯`ϕn. The unification structure U(λ) associated to λ is the the formula tree F (ϕ)
together with an undirected edge between leaves l and l

′ for every link {l, l′} in λ and a directed edge
from ∃x to ∀y for every dependency ∃x → ∀y.

Definition 2.41. A switching graph of a unification structure U(λ) is any derivative of U(λ) obtained
by deleting all but one edge into each ` and ∀ and undirecting remaining edges.

Definition 2.42. A linking is correct if it is unifiable and all of the switching graphs of its associated
unification structure are acyclic.

Definition 2.43. A (cut-free) unification net on a sequent Γ is a correct linking on Γ.

Example 2.44. Here is a unification net:

`

∀z`

∃x ∃y

px qy

⊗

pz qfz

Figure 5. A unification net. (dashed lines = links and dotted lines = dependencies)

6

We also give some of its switching graph:

`

∀z`

∃x ∃y

px qy

⊗

pz qfz

`

∀z`

∃x ∃y

px qy

⊗

pz qfz

`

∀z`

∃x ∃y

px qy

⊗

pz qfz

`

∀z`

∃x ∃y

px qy

⊗

pz qfz

Figure 6. Some switching graphs of the unification net shown in Figure 5.

It is clear that they are all connected and acyclic.

2.8 Deep inference

In our study we also use some deep inference rules that are in the following form:

⊢ S{A}
⊢ S{B}

where S{ } stands for a context, which corresponds to a sequent or a formula with a hole taking the
place of an atom, and S{A} represents the sequent or formula obtained by replacing the hole in S{ }
with the formula A.

C ::= □ ∣ A ∨ C ∣ C ∨A ∣ ∃xC ∣ ∀xC
.

S ::= C∣A,S∣S,A
where A is a formula. The above rule can be thus seen as the rewriting rule A → B.

Notation 2.45. We use the notation
A
P

B
for denoting that there is a derivation from premise ⊢ S{A}

to conclusion ⊢ S{B} in system P for any context S.

7

3 From first-order logic to combinatorial proofs

3.1 LK

We start with Gentzen’s sequent calculus system LK.

ax
⊢ A,¬A

⊢ Γ, A ⊢ ∆,¬A
cut

⊢ Γ,∆

⊢ Γ, A ⊢ ∆, B
∧

⊢ Γ,∆, A ∧B

⊢ Γ, A,B
∨

⊢ Γ, A ∨B

⊢ Γ, A,A
ctr

⊢ Γ, A

⊢ Γ
wk

⊢ Γ, A

t
⊢ t

⊢ Γ f
⊢ Γ, f

⊢ Γ, A
∀

⊢ Γ,∀xA
(x ∉ fv(Γ))

⊢ Γ, A[t/x]
∃

⊢ Γ,∃xA

We also consider the mix rule here:

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆

Note that the mix rule is derivable via weakening in LK.

Consider the following deep rules:

⊢ S{A ∨A}
c↓

⊢ S{A} ⊢ S{f}
w↓

⊢ S{A}
Note that the ctr (resp. wk) rule in LK is derivable in {c↓,∨} (resp. {w↓, f}) and that c↓ and w↓
rules permute downwards with the non-structural rules of LK.

⊢ Γ, A,A
ctr

⊢ Γ, A
↝

⊢ Γ, A,A
∨

⊢ Γ, A ∨A c↓
⊢ Γ, A

⊢ Γ
wk

⊢ Γ, A
↝

⊢ Γ f
⊢ Γ, f w↓
⊢ Γ, A

We also give an example to show how rule permutation works:

Γ, A ∨A c↓
Γ, A ∆, B

∧
Γ,∆, A ∧B

↝

Γ, A ∨A ∆, B
∧

Γ,∆, (A ∨A) ∧B
c↓

Γ,∆, A ∧B

We want to establish the following theorem:

Theorem 3.1. Let Γ be a sequent. Then there is a proof of Π in LK + mix iff there is a proof of
some sequent ∆ in MLL1 + mix and a derivation from ∆ to Γ consisting of the c↓ and w↓ rules
only.

8

Proof. (⇒) This direction comes from the above observation: it suffices to permute downwards all the
instances of the c↓ and w↓ rules.

(⇐) We regard the proof in MLL1 + mix as a proof in LK + mix. Then we put the derivation
consisting of only c↓ and w↓ under the proof in LK + mix. Now we try to permute all the instances
c↓ and w↓ upwards with the rules of LK and mix. For the c↓ part, the only non-trivial case is the
permutation with the ∨ rule where the formula generated is A ∨A.

⊢ Γ, A,A
∨

⊢ Γ, A ∨A c↓
⊢ Γ, A

↝
⊢ Γ, A,A

ctr
⊢ Γ, A

In this case, the permutation of this instance of c↓ stops and we continue with the remaining instances.

For the w↓ part, the only non-trivial case is the permutation with the f rule (or the instance of wk
where f is introduced):

⊢ Γ f
⊢ Γ, f w↓
⊢ Γ, A

↝
⊢ Γ

wk
⊢ Γ, A

In this case, the permutation of this instance of w↓ stops and we continue with the remaining instances.

In [3], D. Hughes proves the soundness and completeness of unification nets with respect to MLL1 +
mix. In the following, we establish the equivalence between unification nets and fonets.

3.2 Equivalence between unification nets and fonets

In the following, we usually confound a vertex with its label.

We also confound ` with ∨ and ⊗ with ∧ as unification nets and first-order nets (fonets) are defined
in different contexts.

Definition 3.1. A switching path of a unification structure U(λ) is a path in a switching graph of
U(λ).

Definition 3.2. A switching path of a formula tree F (ϕ) is a path in F (ϕ) that does not go through
both incoming edges of a `.

Proposition 3.3. In a formula tree, the root is connected to every vertex by a switching path.

Now we give the key proposition relating a fograph to its corresponding formula tree.

Proposition 3.4. Let u and v be two distinct vertices of a fograph G(ϕ), then we have the equivalence
between:

• u and v are adjacent in G(ϕ)

• u and v are connected by a switching path of F (ϕ), and if one of them is a universal quantifier,
then the other is not a descendant of the former.

Proof. By induction on ϕ.

• If ϕ is an atom, trivial.

9

• If ϕ = ϕ1 ∧ ϕ2, then we distinguish two cases:

– u and v are both in ϕ1 (resp. ϕ2): trivial by the induction hypothesis.
– one of them is in ϕ1 and the other is in ϕ2: they are adjacent in G(ϕ) by definition. By

Proposition 3.3, the one in ϕ1 (resp. ϕ2) is connected to the vertex representing ϕ1 (resp.
ϕ2) by a switching path. Together with the two edges incident to ϕ1 ∧ ϕ2, we obtain a
switching path connecting u and v.

• If ϕ = ϕ1 ∨ ϕ2, then we distinguish two cases:

– u and v are both in ϕ1 (resp. ϕ2): trivial by the induction hypothesis.
– one of them is in ϕ1 and the other is in ϕ2: they are not adjacent in G(ϕ) by definition. It

is clear that they are not connected by a switching path.

• If ϕ = ∃x ϕ
′, then we distinguish two cases:

– u and v are both in ϕ
′: trivial by the induction hypothesis.

– one of them is ∃x and the other is in ϕ
′: trivial by Proposition 3.3

• If ϕ = ∀x ϕ
′, then we distinguish two cases:

– u and v are both in ϕ
′: trivial by the induction hypothesis.

– one of them is ∀x and the other is in ϕ
′: they are not adjacent in G(ϕ) by definition and

it is clear that the former is a descendant of ∀x.

Proposition 3.5. If there exists an induced bimatching of the linked fograph G = G(ϕ), then there
exists a switching graph of the corresponding unification net which contains a cycle.

Proof. Suppose that there exists a set W inducing a bimatching in G. Then (W,EG) and (W,LG) are
matchings.
Let EW (resp. LW) be the restriction of EG (resp. LG) to W .
If EW ∩LW ≠ ∅, then there exist u and v such that uv ∈ EG and uv ∈ LG. By Proposition 3.4, there
exists a switching path of the formula tree of ϕ. Together with the leap uv, this path induces a cycle
in a switching graph of the corresponding unification structure.
We can now suppose that EW and LW are disjoint. It is not difficult to see the existence of an
alternating and elementary cycle in the bicoloured graph (W,EW ⊎ LW), i.e. a cycle of which the
edges are alternately in EW and LW and containing no two equal vertices. By Proposition 3.4, this
cycle induces a cycle in the unification structure. Now we want to construct a switching graph that
contains this cycle.
Consider a universal quantifier ∀x. If ∀x ∉ W , then we keep the incoming edge from its direct
subformula and remove all the dependencies. Otherwise, since (W,LG) is a matching, there exists a
unique existential quantifier adjacent to ∀x and we keep thus the corresponding edge in the unification
structure.
Now consider a `. We distinguish three cases:

• the cycle goes through none of the two branches (incoming edges) of the `: we can choose an
arbitrary switching for this `

• the cycle goes through exactly one branch: we choose the corresponding switching

• the cycle goes through both branches: this means that there exist vL ∈ W (resp. vR) in the
left (resp. right) branch, uL, uR ∈ W , such that uLvL, uRvR ∈ EW and that the corresponding
switching path from uL to vL (resp. from uR to vR) goes through the left (resp. right) edge of
`.

10

`

⋮⋮

vRvL

⋮⋮ uLuR

Figure 7. A schema showing that the two branches of the same ` cannot be used in the cycle
at the same time.

The red (resp. blue) path is the switching path corresponding to the edge uLvL (resp. uRvR) in
EW .
It is clear that uL (resp. uR) is not in the branches of the `. Otherwise, there will be no
switching path from uL to vL

By Proposition 3.4, we know that uL and uR are not universal quantifiers which are ancestors the
` and that there exist one switching path from uL to vL and one from uR to vR. In particular,
there exist one switching path from uL to the ` and one from the ` to vR, and by concatenating
the two, we obtain a switching path from uL to vR. By Proposition 3.4, uL and vR are thus
adjacent in (W,EG), which is impossible since (W,EW) is a matching.

Notice that the switching paths here are in the underlying formula tree. We have to verify that they
are compatible with the choices of switching made for universal quantifiers. That is, if uv ∈ EW , then
for all the universal quantifiers ∀x on the switching path (in the formula tree), we have chosen in the
first part of the proof to keep the only edge from the child of ∀x to itself. In fact, if there exists a
universal quantifier w ∈ W on the switching path u → v, then one of u and v is not a descendant of
w. Moreover, if u (resp. v) is a universal quantifier, then w is not in its scope. By Proposition 3.4,{wu,wv} ∩ EW ≠ ∅, which is impossible since (W,EW) is a matching. We have thus constructed a
switching graph containing this cycle.

Proposition 3.6. If one of the switching graphs of the unification structure of ϕ contains a cycle or
is not connected, then there exists an induced bimatching of the corresponding linked fograph.

Proof. We use frames introduced by Hughes in Section 4 of [3].

Definition 3.7. Let θ be a unification structure on an MLL1 sequent Γ. We define the frame of θ
by exhaustively applying the following subformula rewriting steps, to obtain a proof structure θm on
an MLL sequent Γm:

1. Encode dependencies as fresh links. For each dependency ∃x → ∀y, with corresponding
subformulas ∃xA and ∀yB, we add a fresh link as follows. Let P be a fresh (nullary) predicate
symbol. Replace ∃xA with P ⊗ ∃xA and ∀yB with P `∀yB, and add an axiom link between
P and P .

2. Erase quantifiers. After step 1, erase all the quantifiers. (We no longer need their leaps since
they are encoded as links in step 1.

3. Simplify atoms. After step 2, replace every predicate Pt1⋯tn with a nullary predicate symbol
P .

11

`

∀z`

∃x ∃y

px qy

⊗

pz qfz

`
``

⊗ ⊗

S RP Q S

`
⊗

P QR

Figure 8. The unification net in Example 2.44 and its frame. The colored part shows how the
dependency ∃x → ∀z is transformed.

We have the following results:

Let u and v be atoms or quantifiers in a unification structure θ. Then they are connected by a
switching path in the unification structure if, and only if, their corresponding nodes are connected by
a switching path in θm.

Consider now a switching graph H of a unification structure θ of ϕ.

If H contains a cycle, then the corresponding switching graph of θm also contains a cycle. Hence, by
applying the propositional results (Theorem 7) from [5], we conclude that there exists a chordless,
alternating, and elementary cycle in the bicoloured graph (W,EW ⊎ LW), which corresponds to an
induced bimatching in the linked fograph. (Note that the linked fograph (cograph) corresponding to
θm is equivalent to the one corresponding to θ.)

3.3 Relation between weakening/contraction and skew bifibrations

We first introduce the atomic contraction rule, the medial rule, and two rules on quantifiers.

⊢ S{a ∨ a}
ac↓

⊢ S{a} ⊢ S{(A ∧B) ∨ (C ∧D)}
m

⊢ S{(A ∨ C) ∧ (B ∨D)} ⊢ S{∃xA ∨ ∃xB}
m1↓

⊢ S{∃x(A ∨B)} ⊢ S{∀xA ∨∀xB}
m2↓

⊢ S{∀x(A ∨B)}
Here, we also consider the equivalence generated by the associativity, commutativity of ∨ and the
equations t ∨A ≡ t and f ∨A ≡ A.

Now we have the following lemma:

Lemma 3.8. The contraction rule c↓ is derivable for {ac↓,m,m1↓,m2↓}.
Proof. We prove that there is always

A ∨A{ac↓,m,m1↓,m2↓}
A

by structural induction on A.

• If A = t or A = f, we have
⊢ S{A ∨A}

≡
⊢ S{A} . (the premiss and the conclusion are equivalent)

• If A = a, then we have
⊢ S{a ∨ a}

ac↓
⊢ S{a}

12

• If A = A1 ∨A2, then by the induction hypothesis, we have
Ai ∨Ai{ac↓,m,m1↓,m2↓}

Ai

for i = 1, 2.

Hence, we have

⊢ S{(A1 ∨A2) ∨ (A1 ∨A2)} ≡
⊢ S{(A1 ∨A1) ∨ (A2 ∨A2)}..... {ac↓,m,m1↓,m2↓}

⊢ S{A1 ∨ (A2 ∨A2)}..... {ac↓,m,m1↓,m2↓}
⊢ S{A1 ∨A2}

• If A = A1 ∧A2, then by the induction hypothesis, we have
Ai ∨Ai{ac↓,m,m1↓,m2↓}

Ai

for i = 1, 2.

Hence, we have

⊢ S{(A1 ∧A2) ∨ (A1 ∧A2)} m
⊢ S{(A1 ∨A1) ∧ (A2 ∨A2)}..... {ac↓,m,m1↓,m2↓}

⊢ S{A1 ∧ (A2 ∨A2)}..... {ac↓,m,m1↓,m2↓}
⊢ S{A1 ∧A2}

• If A = ∃xA′, then by the induction hypothesis, we have
A
′ ∨A

′

{ac↓,m,m1↓,m2↓}
A
′

.

Hence, we have

⊢ S{∃xA′ ∨ ∃xA′}
m1↓

⊢ S{∃x(A′ ∨A
′
)}

..... {ac↓,m,m1↓,m2↓}
⊢ S{∃xA′}

• If A = ∀xA′, then by the induction hypothesis, we have
A
′ ∨A

′

{ac↓,m,m1↓,m2↓}
A
′

.

Hence, we have

⊢ S{∀xA′ ∨∀xA′}
m2↓

⊢ S{∀x(A′ ∨A
′
)}

..... {ac↓,m,m1↓,m2↓}
⊢ S{∀xA′}

Lemma 3.9. The rules m1↓ and m2↓ are derivable for {w↓, c↓}.
Proof. We have:

∃xA ≡
∃x(A ∨ f)

w↓
∃x(A ∨B)

and
∃xB ≡

∃x(f ∨B)
w↓

∃x(A ∨B)

13

Thus, we have:

∃xA ∨ ∃xB...
∃x(A ∨B) ∨ ∃x(A ∨B)

c↓
∃x(A ∨B)

Similar for m2↓.

Now we define a propositional encoding for first-order formulas.

Definition 3.10. The propositional encoding A
P of a formula A is defined inductively by:

a
P
= a for every atom a

(A ∨B)
P
= A

P ∨B
P

(A ∧B)
P
= A

P ∧B
P

(∀xA)
P
= Ux ∨A

P
(∃xA)

P
= Ex ∧A

P

where Ux and Ex are fresh nullary atoms.

Similarly, we can define the propositional encoding S
P of a context S inductively by setting □P

= □.
Note that S

P is also an encoding.

We have the following facts:

Proposition 3.11. For any context S and any formula A:

• A
P is a formula containing no quantifier for any formula A.

• G(A
P
) = G(A) by confounding the atoms Ux, Ex with the variable x. Thus, a map f : G(A

P
) →

G(B
P
) can be seen as a map f : G(A) → G(B).

• (S{A})P = S
P {AP }.

Proposition 3.12. Let A and B be two formulas such that
A{w↓,c↓}
B

. Then
A

P

{w↓,c↓}
B

P
.

Lemma 3.13. Given two formulas A and B and a derivation
A

∆ {w↓,c↓}
B

, then there exists a skew

bifibration G(A) → G(B).

Proof. By Lemma 3.8, there exists a derivation
A

∆ {w↓,ac↓,m,m1↓,m2↓}
B

.

For each rule from {w↓, ac↓,m,m1↓,m2↓}, we define a map and show that it is a skew fibration.

•
⊢ S{f}

w↓
⊢ S{A} :

the map wk maps f to anything and is identity elsewhere.

•
⊢ S{a ∨ a}

ac↓
⊢ S{a} :

the map ac maps the two a-labelled literals in the premise to the a-labelled literal in the con-
clusion.

14

•
⊢ S{(A ∧B) ∨ (C ∧D)}

m
⊢ S{(A ∨ C) ∧ (B ∨D)} :

the map m is the canonical identity that maps A to A, ⋯, D to D.

•
⊢ S{∃xA ∨ ∃xB}

m1↓
⊢ S{∃x(A ∨B)} :

the map m1 maps the two x-labelled binders in the premise to the x-labelled binder in the
conclusion, A to A and B to B.

•
⊢ S{∀xA ∨∀xB}

m2↓
⊢ S{∀x(A ∨B)} :

the map m2 maps the two x-labelled binders in the premise to the x-labelled binder in the
conclusion, A to A and B to B.

By considering propositional encodings, the maps defined are label-preserving skew fibrations on the
underlying fographs according to [7].

Now we prove that each map g ∈ {wk, ac,m,m1,m2} is a skew bifibration. To do that, it suffices
to prove that g is a fibration between the corresponding binding graphs since it is already a skew
fibration on the corresponding fographs and it is label-preserving and existential-preserving.

for each x-binder b in G(B
P
), for each vertex v ∈ V (G(A

P
)) such that g(v) is bound by b, there

exists a unique binder b
′ such that b

′ binds v.

• wk and m are clearly fibrations: the binding relations of the premise and the conclusion are
exactly the same.

• ac is a fibration: suppose that a that in the conclusion a is bound by some quantifier b in S,
then for each of its preimages by ac, there exists exactly one binder (in fact, b) in S that binds
it.

• m1 and m2 are fibrations: in the conclusion, for every atom a in A∨B bound by the x-labelled
quantifier, a has exactly one preimage and it is bound by the x-llabelled quantifier in the premise.

Therefore, all of these maps are skew bifibrations and since skew bifibrations on fographs compose
(Lemma 10.32, [4]), there exists a skew bifibration from G(A) to G(B).

Theorem 3.2. If a formula ϕ is provable in LK, then it has a combinatorial proof.

Proof. By Theorem 3.1, there exists a formula ϕ
′ such that there is a proof Π of ϕ′ in MLL1 and a

derivation D from ϕ
′ to ϕ consisting of the w↓ and c↓ rules only. The proof Π corresponds to a unique

unification net which is equivalent to the fonet corresponding to Π, i.e., the fograph G(ϕ
′
) together

with the links of Π. By Lemma 3.13, there exists a skew bifibration G(ϕ
′
) → G(ϕ). We have thus a

combinatorial proof of ϕ.

4 Conclusion and Future Work

We have established a correspondence between unification nets and fonets, which allows us to prove
the completeness of first-order combinatorial proofs by constructing skew bifibrations correspond-
ing to weakening/contraction derivations. Our future goal is thus to give a proof of correctness by
constructing weakening/contraction derivations from skew bifibrations given.

15

References
[1] Matteo Acclavio and Lutz Straßburger. On

Combinatorial Proofs for Modal Logic. In In-
ternational Conference on Automated Rea-
soning with Analytic Tableaux and Related
Methods, London, 2019. Springer.

[2] Dominic J. D. Hughes. Proofs without syn-
tax. Annals of Mathematics, 164(3):1065-
1076, 2006.

[3] Dominic J. D. Hughes. Unification nets:
canonical proof net quantifiers. In Proc.
LICS ’18, 2018.

[4] Dominic J. D. Hughes. First-order proofs
without syntax. Available at arXiv.org, 2019.

[5] Christian Retoré. Handsome proof-nets: per-
fect matchings and cographs. Theoretical
Computer Science, 294(3):473-488, 2003.

[6] Benjamin Ralph and Lutz Straßburger. To-
wards a combinatorial proof theory. In Inter-
national Conference on Automated Reasoning
with Analytic Tableaux and Related Methods,
London, 2019. Springer.

[7] Lutz Straßburger. A characterization of me-
dial as rewriting rule. In International Con-
ference on Rewriting Techniques and Appli-
cations, pages 344-358. Springer, 2007.

16

