

Non-Wellfounded Derivations for Intersection Subtyping with Fixpoints

Jui-Hsuan Wu

Joint work with Olivier Laurent

CNRS, LIP, ENS de Lyon

CHoCoLa Meeting

5 February 2026

Outline

Intersection type systems and BCD subtyping

Sequent calculus IS for BCD subtyping

Extending IS with fixpoints

Instances

Conclusion and future directions

Intersection types

Intersection types are introduced to extend simple types of the λ -calculus.

$$A ::= X \mid A \rightarrow B \mid A \cap B$$

\cap is associative and commutative.

Intersection types

Intersection types are introduced to extend simple types of the λ -calculus.

$$A ::= X \mid A \rightarrow B \mid A \cap B$$

\cap is associative and commutative.

Intersection type systems

- allow typing more terms and characterizing various *qualitative* properties of reduction, such as strong normalization;
- yield models of the λ -calculus called *filter models*;
- provide a way to study *quantitative* properties of reduction, such as the number of reduction steps \hookrightarrow non-idempotent intersection types.

Intersection types

Intersection types are introduced to extend simple types of the λ -calculus.

$$A ::= X \mid A \rightarrow B \mid A \cap B$$

\cap is associative and commutative.

Intersection type systems

- allow typing more terms and characterizing various *qualitative* properties of reduction, such as strong normalization;
- yield models of the λ -calculus called *filter models*;
- provide a way to study *quantitative* properties of reduction, such as the number of reduction steps \hookrightarrow non-idempotent intersection types.

Intersection types

Intersection types are introduced to extend simple types of the λ -calculus.

$$A ::= X \mid A \rightarrow B \mid A \cap B$$

\cap is associative and commutative.

Intersection type systems

- allow typing more terms and characterizing various *qualitative* properties of reduction, such as strong normalization;
- yield models of the λ -calculus called *filter models*;
- provide a way to study *quantitative* properties of reduction, such as the number of reduction steps \hookrightarrow non-idempotent intersection types.

Intersection types

Intersection types are introduced to extend simple types of the λ -calculus.

$$A ::= X \mid A \rightarrow B \mid A \cap B$$

\cap is associative and commutative.

Intersection type systems

- allow typing more terms and characterizing various *qualitative* properties of reduction, such as strong normalization;
- yield models of the λ -calculus called *filter models*;
- provide a way to study *quantitative* properties of reduction, such as the number of reduction steps \hookrightarrow non-idempotent intersection types.

In this talk, \cap is idempotent, that is, $A \cap A \sim A$.

Intersection type systems: typing

We consider *extensions* of the **BCD intersection type system** [1983].

$$A ::= X \mid A \rightarrow B \mid A \cap B \mid \Omega$$

Intersection type systems: typing

We consider *extensions* of the **BCD intersection type system** [1983].

$$A ::= X \mid A \rightarrow B \mid A \cap B \mid \Omega$$

These extensions share the same set of typing rules but differ in the **subtyping** relation \leq that parameterized them.

$$\frac{}{\Gamma, x : A \vdash x : A} \text{ var} \quad \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x. t : A \rightarrow B} \text{ abs}$$

$$\frac{\Gamma \vdash t : A \rightarrow B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B} \text{ app}$$

$$\frac{\Gamma \vdash t : A \quad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \text{ inter} \quad \frac{}{\Gamma \vdash t : \Omega} \text{ omg}$$

$$\frac{\Gamma \vdash t : A \quad A \leq B}{\Gamma \vdash t : B} \text{ sub}$$

Intersection type systems: subtyping

The subtyping relation includes the following rules:

$$\frac{}{A \leq A}$$

$$\frac{A \leq B \quad B \leq C}{A \leq C}$$

$$\frac{}{A \leq \Omega}$$

$$\frac{}{A \cap B \leq A}$$

$$\frac{}{A \cap B \leq B}$$

$$\frac{}{A \leq A \cap A}$$

$$\frac{A \leq C \quad B \leq D}{A \cap B \leq C \cap D}$$

$$\frac{C \leq A \quad B \leq D}{A \rightarrow B \leq C \rightarrow D}$$

$$\frac{}{(C \rightarrow A) \cap (C \rightarrow B) \leq C \rightarrow (A \cap B)}$$

$$\frac{}{\Omega \leq \Omega \rightarrow \Omega}$$

We write $A \sim B$ if $A \leq B$ and $B \leq A$.

Properties of intersection type systems

It is known from the literature that we always have:

- **subject β -expansion:** if $t \rightarrow_{\beta} u$ then $\Gamma \vdash u : A \Rightarrow \Gamma \vdash t : A$.
- **subject η -reduction:** if $t \rightarrow_{\eta} u$ then $\Gamma \vdash t : A \Rightarrow \Gamma \vdash u : A$.

Properties of intersection type systems

It is known from the literature that we always have:

- **subject β -expansion:** if $t \rightarrow_{\beta} u$ then $\Gamma \vdash u : A \Rightarrow \Gamma \vdash t : A$.
- **subject η -reduction:** if $t \rightarrow_{\eta} u$ then $\Gamma \vdash t : A \Rightarrow \Gamma \vdash u : A$.

To obtain models for β - and/or η -conversions, we also need:

- **subject β -reduction:** if $t \rightarrow_{\beta} u$ then $\Gamma \vdash t : A \Rightarrow \Gamma \vdash u : A$.
- **subject η -expansion:** if $t \rightarrow_{\eta} u$ then $\Gamma \vdash u : A \Rightarrow \Gamma \vdash t : A$.

→ we can define $\llbracket t \rrbracket$ as the set $\{(\Gamma, A) \mid \Gamma \vdash t : A\}$.

Properties of intersection type systems

It is known from the literature that we always have:

- **subject β -expansion:** if $t \rightarrow_{\beta} u$ then $\Gamma \vdash u : A \Rightarrow \Gamma \vdash t : A$.
- **subject η -reduction:** if $t \rightarrow_{\eta} u$ then $\Gamma \vdash t : A \Rightarrow \Gamma \vdash u : A$.

To obtain models for β - and/or η -conversions, we also need:

- **subject β -reduction:** if $t \rightarrow_{\beta} u$ then $\Gamma \vdash t : A \Rightarrow \Gamma \vdash u : A$.
- **subject η -expansion:** if $t \rightarrow_{\eta} u$ then $\Gamma \vdash u : A \Rightarrow \Gamma \vdash t : A$.

→ we can define $\llbracket t \rrbracket$ as the set $\{(\Gamma, A) \mid \Gamma \vdash t : A\}$.

These properties require additional assumptions.

β -condition η -condition

The **β -condition**, stated as follows,

$$\bigcap_{i \in I} A_i \rightarrow B_i \leq A \rightarrow B \implies \exists J \subseteq I, \quad A \leq \bigcap_{j \in J} A_j \quad \wedge \quad \bigcap_{j \in J} B_j \leq B \quad (\beta)$$

entails subject β -reduction.

β -condition η -condition

The **β -condition**, stated as follows,

$$\bigcap_{i \in I} A_i \rightarrow B_i \leq A \rightarrow B \implies \exists J \subseteq I, \quad A \leq \bigcap_{j \in J} A_j \quad \wedge \quad \bigcap_{j \in J} B_j \leq B \quad (\beta)$$

entails subject β -reduction.

Only subtyping is involved!

β -condition η -condition

The **β -condition**, stated as follows,

$$\bigcap_{i \in I} A_i \rightarrow B_i \leq A \rightarrow B \implies \exists J \subseteq I, \quad A \leq \bigcap_{j \in J} A_j \quad \wedge \quad \bigcap_{j \in J} B_j \leq B \quad (\beta)$$

entails subject β -reduction.

Only subtyping is involved!

However, checking the β -condition is still complicated...

(ii) By induction on the definition of \leq one can show for $n, n', m, m' \geq 0$ that for all $l \in \{1, \dots, n'\}$ one has

$$\begin{aligned} & [(\mu_1 \rightarrow \nu_1) \cap \dots \cap (\mu_n \rightarrow \nu_n) \cap \varphi_{j_1} \cap \dots \cap \varphi_{j_m} \\ & \leq (\sigma_1 \rightarrow \tau_1) \cap \dots \cap (\sigma_{n'} \rightarrow \tau_{n'}) \cap \varphi_{j'_1} \cap \dots \cap \varphi_{j'_m} \cap \omega \cap \dots \cap \omega, \\ & \text{and } \tau_l \not\sim \omega \Rightarrow \exists i_1, \dots, i_k \in \{1, \dots, n\} \quad \mu_{i_1} \cap \dots \cap \mu_{i_k} \geq \sigma_l \\ & \text{and } \nu_{i_1} \cap \dots \cap \nu_{i_k} \leq \tau_l]. \end{aligned}$$

η -condition and extensions of BCD subtyping

The **η -condition**, stated as follows,

$$\forall X \in \mathcal{A}, \quad \exists (A_i)_{i \in I} (B_i)_{i \in I}, \quad X \sim \bigcap_{i \in I} A_i \rightarrow B_i \quad (\eta)$$

is equivalent to subject η -expansion.

η -condition and extensions of BCD subtyping

The **η -condition**, stated as follows,

$$\forall X \in \mathcal{A}, \quad \exists (A_i)_{i \in I} (B_i)_{i \in I}, \quad X \sim \bigcap_{i \in I} A_i \rightarrow B_i \quad (\eta)$$

is equivalent to subject η -expansion.

Here are some systems from the literature we will be able to address:

Name	Atoms	Additional axioms	β	η
BCD	\mathcal{A}		✓	
Scott	\mathcal{A}	$X \sim \Omega \rightarrow X$	✓	✓
Park	\mathcal{A}	$X \sim X \rightarrow X$	✓	✓
CDZ	\mathbb{B}	$\varphi \leq \psi \quad \varphi \sim \psi \rightarrow \varphi \quad \psi \sim \varphi \rightarrow \psi$	✓	✓
HR	\mathbb{B}	$\varphi \leq \psi \quad \varphi \sim \psi \rightarrow \varphi \quad \psi \sim (\varphi \rightarrow \varphi) \cap (\psi \rightarrow \psi)$	✓	✓
DHM	\mathbb{B}	$\varphi \leq \psi \quad \varphi \sim \Omega \rightarrow \varphi \quad \psi \sim \varphi \rightarrow \psi$	✓	✓
TLCA	\mathbb{B}	$\varphi \sim \psi \rightarrow \varphi \quad \psi \sim (\psi \rightarrow \psi) \cap (\varphi \rightarrow \psi)$	✓	✓

where $\mathbb{B} = \{\varphi, \psi\}$.

Toward a transitivity-free presentation

Why is it so difficult to check the β -condition?

Toward a transitivity-free presentation

Why is it so difficult to check the β -condition?

$$\frac{A \leq B \quad B \leq C}{A \leq C}$$

Toward a transitivity-free presentation

Why is it so difficult to check the β -condition?

$$\frac{A \leq B \quad B \leq C}{A \leq C}$$

We cannot simply remove this rule.

Example: $C \rightarrow (A \cap B) \leq (C \rightarrow A) \cap (C \rightarrow B)$

Toward a transitivity-free presentation

Why is it so difficult to check the β -condition?

$$\frac{A \leq B \quad B \leq C}{A \leq C}$$

We cannot simply remove this rule.

Example: $C \rightarrow (A \cap B) \leq (C \rightarrow A) \cap (C \rightarrow B)$

What about a sequent calculus for subtyping?

Toward a transitivity-free presentation

Why is it so difficult to check the β -condition?

$$\frac{A \leq B \quad B \leq C}{A \leq C}$$

We cannot simply remove this rule.

Example: $C \rightarrow (A \cap B) \leq (C \rightarrow A) \cap (C \rightarrow B)$

What about a sequent calculus for subtyping?

In 1989, Pierce proposed an algorithm for BCD subtyping, which can actually be presented as a sequent-style system.

The sequent system IS

Sequents: $A \triangleleft \Gamma \vdash B$, where Γ is a list of types.

The sequent system IS

Sequents: $A \trianglelefteq \Gamma \vdash B$, where Γ is a list of types.

Interpreting sequents: $\llbracket A \trianglelefteq A_1, \dots, A_n \vdash B \rrbracket = A \leq A_1 \rightarrow \dots \rightarrow A_n \rightarrow B$.

The sequent system IS

Sequents: $A \trianglelefteq \Gamma \vdash B$, where Γ is a list of types.

Interpreting sequents: $\llbracket A \trianglelefteq A_1, \dots, A_n \vdash B \rrbracket = A \leq A_1 \rightarrow \dots \rightarrow A_n \rightarrow B$.

$$\frac{}{X \trianglelefteq \vdash X} \text{ax} \qquad \frac{}{C \trianglelefteq \Gamma \vdash \Omega} \Omega$$

$$\frac{C \trianglelefteq \Gamma \vdash A \quad C \trianglelefteq \Gamma \vdash B}{C \trianglelefteq \Gamma \vdash A \cap B} \cap R$$

$$\frac{A \trianglelefteq \Gamma \vdash C}{A \cap B \trianglelefteq \Gamma \vdash C} \cap L_1 \quad \frac{B \trianglelefteq \Gamma \vdash C}{A \cap B \trianglelefteq \Gamma \vdash C} \cap L_2$$

$$\frac{C \trianglelefteq \Gamma, A \vdash B}{C \trianglelefteq \Gamma \vdash A \rightarrow B} \rightarrow R \qquad \frac{C \trianglelefteq \vdash A \quad B \trianglelefteq \Gamma \vdash D}{A \rightarrow B \trianglelefteq C, \Gamma \vdash D} \rightarrow L$$

The sequent system IS

Sequents: $A \trianglelefteq \Gamma \vdash B$, where Γ is a list of types.

Interpreting sequents: $\llbracket A \trianglelefteq A_1, \dots, A_n \vdash B \rrbracket = A \leq A_1 \rightarrow \dots \rightarrow A_n \rightarrow B$.

$$\frac{}{X \vdash X} \text{ax} \qquad \frac{}{C, \Gamma \vdash \Omega} \Omega$$

$$\frac{C, \Gamma \vdash A \quad C, \Gamma \vdash B}{C, \Gamma \vdash A \cap B} \cap R$$

$$\frac{A, \Gamma \vdash C}{A \cap B, \Gamma \vdash C} \cap L_1 \quad \frac{B, \Gamma \vdash C}{A \cap B, \Gamma \vdash C} \cap L_2$$

$$\frac{C, \Gamma, A \vdash B}{C, \Gamma \vdash A \rightarrow B} \rightarrow R$$

$$\frac{C \vdash A \quad B, \Gamma \vdash D}{A \rightarrow B, C, \Gamma \vdash D} \rightarrow L$$

The sequent system IS

Sequents: $A \trianglelefteq \Gamma \vdash B$, where Γ is a list of types.

Interpreting sequents: $\llbracket A \trianglelefteq A_1, \dots, A_n \vdash B \rrbracket = A \leq A_1 \rightarrow \dots \rightarrow A_n \rightarrow B$.

$$\frac{}{X \vdash X} \text{ ax} \qquad \frac{}{C, \Gamma \vdash \top} \top$$

$$\frac{C, \Gamma \vdash A \quad C, \Gamma \vdash B}{C, \Gamma \vdash A \& B} \& R$$

$$\frac{A, \Gamma \vdash C}{A \& B, \Gamma \vdash C} \& L_1 \quad \frac{B, \Gamma \vdash C}{A \& B, \Gamma \vdash C} \& L_2$$

$$\frac{C, \Gamma, A \vdash B}{C, \Gamma \vdash A \multimap B} \multimap R \qquad \frac{C \vdash A \quad B, \Gamma \vdash D}{A \multimap B, C, \Gamma \vdash D} \multimap L$$

The sequent system IS

Sequents: $A \trianglelefteq \Gamma \vdash B$, where Γ is a list of types.

Interpreting sequents: $\llbracket A \trianglelefteq A_1, \dots, A_n \vdash B \rrbracket = A \leq A_1 \rightarrow \dots \rightarrow A_n \rightarrow B$.

$$\frac{}{X \trianglelefteq \vdash X} \text{ax} \qquad \frac{}{C \trianglelefteq \Gamma \vdash \Omega} \Omega$$

$$\frac{C \trianglelefteq \Gamma \vdash A \quad C \trianglelefteq \Gamma \vdash B}{C \trianglelefteq \Gamma \vdash A \cap B} \cap R$$

$$\frac{A \trianglelefteq \Gamma \vdash C}{A \cap B \trianglelefteq \Gamma \vdash C} \cap L_1 \quad \frac{B \trianglelefteq \Gamma \vdash C}{A \cap B \trianglelefteq \Gamma \vdash C} \cap L_2$$

$$\frac{C \trianglelefteq \Gamma, A \vdash B}{C \trianglelefteq \Gamma \vdash A \rightarrow B} \rightarrow R \qquad \frac{C \trianglelefteq \vdash A \quad B \trianglelefteq \Gamma \vdash D}{A \rightarrow B \trianglelefteq C, \Gamma \vdash D} \rightarrow L$$

The sequent system IS

Sequents: $A \trianglelefteq \Gamma \vdash B$, where Γ is a list of types.

Interpreting sequents: $\llbracket A \trianglelefteq A_1, \dots, A_n \vdash B \rrbracket = A \leq A_1 \rightarrow \dots \rightarrow A_n \rightarrow B$.

$$\frac{}{X \leq X} \text{ ax} \qquad \frac{}{C \leq \Gamma \rightarrow \Omega} \Omega$$

$$\frac{C \leq \Gamma \rightarrow A \quad C \leq \Gamma \rightarrow B}{C \leq \Gamma \rightarrow A \cap B} \cap R$$

$$\frac{A \leq \Gamma \rightarrow C}{A \cap B \leq \Gamma \rightarrow C} \cap L_1 \quad \frac{B \leq \Gamma \rightarrow C}{A \cap B \leq \Gamma \rightarrow C} \cap L_2$$

$$\frac{C \leq \Gamma \rightarrow A \rightarrow B}{C \leq \Gamma \rightarrow A \rightarrow B} \rightarrow R \qquad \frac{C \leq A \quad B \leq \Gamma \rightarrow D}{A \rightarrow B \leq C \rightarrow \Gamma \rightarrow D} \rightarrow L$$

Cuts admissibility and equivalence

Theorem (Cuts admissibility)

The following cut rules are admissible in IS:

$$\frac{A \trianglelefteq \Gamma \vdash B \quad B \trianglelefteq \Delta \vdash C}{A \trianglelefteq \Gamma, \Delta \vdash C} \text{ tcut} \quad \frac{A \trianglelefteq \vdash B \quad C \trianglelefteq \Gamma, B, \Delta \vdash D}{C \trianglelefteq \Gamma, A, \Delta \vdash D} \text{ scut}$$

Cuts admissibility and equivalence

Theorem (Cuts admissibility)

The following cut rules are admissible in IS:

$$\frac{A \trianglelefteq \Gamma \vdash B \quad B \trianglelefteq \Delta \vdash C}{A \trianglelefteq \Gamma, \Delta \vdash C} \text{ tcut} \quad \frac{A \trianglelefteq \vdash B \quad C \trianglelefteq \Gamma, B, \Delta \vdash D}{C \trianglelefteq \Gamma, A, \Delta \vdash D} \text{ scut}$$

Theorem (Equivalence between BCD and IS)

We have $A \leq B$ in BCD if and only if $A \trianglelefteq \vdash B$ has an IS-derivation.

Cuts admissibility and equivalence

Theorem (Cuts admissibility)

The following cut rules are admissible in IS:

$$\frac{A \trianglelefteq \Gamma \vdash B \quad B \trianglelefteq \Delta \vdash C}{A \trianglelefteq \Gamma, \Delta \vdash C} \text{ tcut} \quad \frac{A \trianglelefteq \vdash B \quad C \trianglelefteq \Gamma, B, \Delta \vdash D}{C \trianglelefteq \Gamma, A, \Delta \vdash D} \text{ scut}$$

Theorem (Equivalence between BCD and IS)

We have $A \leq B$ in BCD if and only if $A \trianglelefteq \vdash B$ has an IS-derivation.

We can extend BCD and IS with a preorder \leq on atoms, by adding the following two rules, respectively. This yields the systems BCD_{\leq} and IS_{\leq} .

$$X < Y \quad \frac{}{X \leq Y} \quad X \leq Y \quad \frac{}{X \trianglelefteq \vdash Y} \leq$$

BCD_{\leq}^{δ} and the non-wellfounded system IS_{\leq}^{δ}

In addition to \leq , we consider a function δ from atoms to types that defines "fixpoint" equations $X \sim \delta X$.

$\text{BCD}_{\leq}^{\delta}$ and the non-wellfounded system $\text{IS}_{\leq}^{\delta}$

In addition to \leq , we consider a function δ from atoms to types that defines "fixpoint" equations $X \sim \delta X$.

$\text{BCD}_{\leq}^{\delta}$ extends BCD_{\leq} with the following rules:

$$\frac{}{X \leq \delta X} \qquad \frac{}{\delta X \leq X}$$

$\text{BCD}_{\leq}^{\delta}$ and the non-wellfounded system $\text{IS}_{\leq}^{\delta}$

In addition to \leq , we consider a function δ from atoms to types that defines "fixpoint" equations $X \sim \delta X$.

$\text{BCD}_{\leq}^{\delta}$ extends BCD_{\leq} with the following rules:

$$\frac{}{X \leq \delta X} \quad \frac{}{\delta X \leq X}$$

$\text{IS}_{\leq}^{\delta}$ extends IS_{\leq} by adding the following **unfolding** rules:

$$\frac{\delta X \trianglelefteq \Gamma \vdash_{\delta} B}{X \trianglelefteq \Gamma \vdash_{\delta} B} \text{ AL}$$

$$\frac{A \trianglelefteq \Gamma \vdash_{\delta} \delta X}{A \trianglelefteq \Gamma \vdash_{\delta} X} \text{ AR}$$

BCD_{\leq}^{δ} and the non-wellfounded system IS_{\leq}^{δ}

In addition to \leq , we consider a function δ from atoms to types that defines "fixpoint" equations $X \sim \delta X$.

BCD_{\leq}^{δ} extends BCD_{\leq} with the following rules:

$$\frac{}{X \leq \delta X} \quad \frac{}{\delta X \leq X}$$

IS_{\leq}^{δ} extends IS_{\leq} by adding the following **unfolding** rules:

$$\frac{\delta X \trianglelefteq \Gamma \vdash_{\delta} B}{X \trianglelefteq \Gamma \vdash_{\delta} B} \text{ AL} \quad \frac{A \trianglelefteq \Gamma \vdash_{\delta} \delta X}{A \trianglelefteq \Gamma \vdash_{\delta} X} \text{ AR}$$

and by replacing the (\leq) rule with the following **checkpoint** rule:

$$X \leq Y \frac{X \trianglelefteq \vdash_{\delta} Y}{X \trianglelefteq \vdash_{\delta} Y} \text{ CP}$$

IS $_{\leqslant}^{\delta}$ -derivations

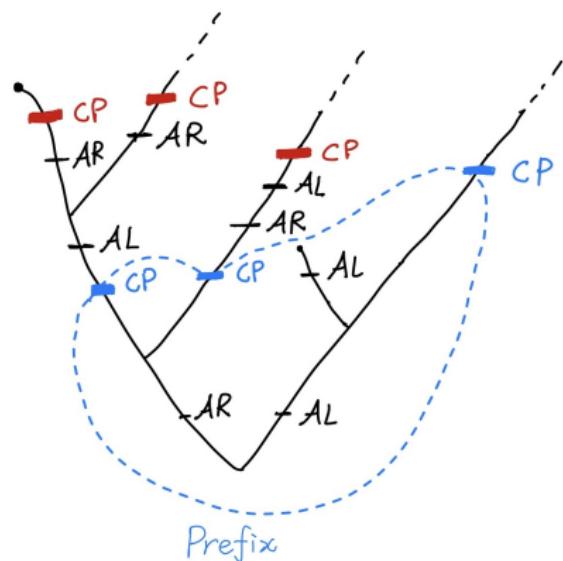
An **IS $_{\leqslant}^{\delta}$ -derivation** is a possibly infinite tree built with the rules of IS $_{\leqslant}^{\delta}$ such that:

on each infinite branch, there are infinitely many checkpoints, and there are exactly one ($\mathcal{A}L$) and exactly one ($\mathcal{A}R$) between any two consecutive checkpoints of any branch.

IS $_{\leq}^{\delta}$ -derivations

An **IS $_{\leq}^{\delta}$ -derivation** is a possibly infinite tree built with the rules of IS_{\leq}^{δ} such that:

on each infinite branch, there are infinitely many checkpoints, and there are exactly one (AL) and exactly one (AR) between any two consecutive checkpoints of any branch.



Cuts admissibility

Theorem

The following two cut rules are admissible in $\text{IS}_{\leq}^{\delta}$:

$$\frac{A \trianglelefteq \Gamma \vdash B \quad B \trianglelefteq \Delta \vdash C}{A \trianglelefteq \Gamma, \Delta \vdash C} \text{ tcut} \quad \frac{A \trianglelefteq \vdash B \quad C \trianglelefteq \Gamma, B, \Delta \vdash D}{C \trianglelefteq \Gamma, A, \Delta \vdash D} \text{ scut}$$

Cuts admissibility

Theorem

The following two cut rules are admissible in $\text{IS}_{\leq}^{\delta}$:

$$\frac{A \trianglelefteq \Gamma \vdash B \quad B \trianglelefteq \Delta \vdash C}{A \trianglelefteq \Gamma, \Delta \vdash C} \text{ tcut} \quad \frac{A \trianglelefteq \vdash B \quad C \trianglelefteq \Gamma, B, \Delta \vdash D}{C \trianglelefteq \Gamma, A, \Delta \vdash D} \text{ scut}$$

Proof sketch:

We define two measures, $pw(\cdot)$ and $fw(\cdot)$, on the number of **rules** and the number of **unfolding rules** within the prefix of an $\text{IS}_{\leq}^{\delta}$ -derivation.

Cuts admissibility

Theorem

The following two cut rules are admissible in $\text{IS}_{\leq}^{\delta}$:

$$\frac{A \trianglelefteq \Gamma \vdash B \quad B \trianglelefteq \Delta \vdash C}{A \trianglelefteq \Gamma, \Delta \vdash C} \text{ tcut} \quad \frac{A \trianglelefteq \vdash B \quad C \trianglelefteq \Gamma, B, \Delta \vdash D}{C \trianglelefteq \Gamma, A, \Delta \vdash D} \text{ scut}$$

Proof sketch:

We define two measures, $pw(\cdot)$ and $fw(\cdot)$, on the number of **rules** and the number of **unfolding rules** within the prefix of an $\text{IS}_{\leq}^{\delta}$ -derivation.

We then prove the two admissibilities by mutual induction on (f, s, p) where $f = fw(\pi_1) + fw(\pi_2)$, $s = \text{size}(B)$ and $p = pw(\pi_1) + pw(\pi_2)$.

Cut elimination: some cases

$$\frac{C \trianglelefteq \Gamma, A \vdash_{\delta} B \quad C \trianglelefteq \Gamma \vdash_{\delta} A \rightarrow B}{C \trianglelefteq \Gamma, D, \Delta \vdash_{\delta} E} \rightarrow R \quad \frac{D \trianglelefteq \vdash_{\delta} A \quad B \trianglelefteq \Delta \vdash_{\delta} E \quad A \rightarrow B \trianglelefteq D, \Delta \vdash_{\delta} E}{A \rightarrow B \trianglelefteq D, \Delta \vdash_{\delta} E} \rightarrow L$$

~

$$\frac{\begin{array}{c} D \trianglelefteq \vdash_{\delta} A \quad C \trianglelefteq \Gamma, A \vdash_{\delta} B \\ \hline C \trianglelefteq \Gamma, D \vdash_{\delta} B \end{array} \quad \begin{array}{c} scut \\ B \trianglelefteq \Delta \vdash_{\delta} E \\ \hline C \trianglelefteq \Gamma, D, \Delta \vdash_{\delta} E \end{array}}{C \trianglelefteq \Gamma, D, \Delta \vdash_{\delta} E} \quad tcut$$

$$\frac{\begin{array}{c} A \trianglelefteq \Gamma \vdash_{\delta} \delta X \quad AR \\ A \trianglelefteq \Gamma \vdash_{\delta} X \end{array} \quad \begin{array}{c} \delta X \trianglelefteq \Delta \vdash_{\delta} B \quad AL \\ X \trianglelefteq \Delta \vdash_{\delta} B \end{array} \quad \begin{array}{c} tcut \\ \hline A \trianglelefteq \Gamma, \Delta \vdash_{\delta} B \end{array}}{A \trianglelefteq \Gamma, \Delta \vdash_{\delta} B} \quad tcut$$

~

$$\frac{\begin{array}{c} A \trianglelefteq \Gamma \vdash_{\delta} \delta X \\ \hline A \trianglelefteq \Gamma, \Delta \vdash_{\delta} B \end{array} \quad \begin{array}{c} \delta X \trianglelefteq \Delta \vdash_{\delta} B \\ \hline A \trianglelefteq \Gamma, \Delta \vdash_{\delta} B \end{array}}{A \trianglelefteq \Gamma, \Delta \vdash_{\delta} B} \quad tcut$$

$$\frac{X \leqslant Y \quad \frac{X \trianglelefteq \vdash_{\delta} Y \quad X \trianglelefteq \vdash_{\delta} Y}{CP} \quad Y \leqslant Z \quad \frac{Y \trianglelefteq \vdash_{\delta} Z \quad Y \trianglelefteq \vdash_{\delta} Z}{CP}}{X \trianglelefteq \vdash_{\delta} Z} \quad tcut$$

~

$$\frac{\begin{array}{c} X \trianglelefteq \vdash_{\delta} Y \quad Y \trianglelefteq \vdash_{\delta} Z \\ \hline X \trianglelefteq \vdash_{\delta} Z \end{array} \quad \begin{array}{c} CP \\ \hline X \trianglelefteq \vdash_{\delta} Z \end{array}}{X \leqslant Z} \quad tcut$$

$$\frac{\begin{array}{c} A \trianglelefteq \Gamma \vdash_{\delta} \delta X \quad AR \\ A \trianglelefteq \Gamma \vdash_{\delta} X \end{array} \quad X \leqslant Y \quad \frac{X \trianglelefteq \vdash_{\delta} Y \quad X \trianglelefteq \vdash_{\delta} Y}{CP}}{A \trianglelefteq \Gamma \vdash_{\delta} Y} \quad tcut$$

~

$$\frac{\begin{array}{c} A \trianglelefteq \Gamma \vdash_{\delta} \delta X \quad \delta X \trianglelefteq \vdash_{\delta} \delta Y \\ \hline A \trianglelefteq \Gamma \vdash_{\delta} \delta Y \end{array} \quad \begin{array}{c} AR \\ \hline A \trianglelefteq \Gamma \vdash_{\delta} Y \end{array}}{A \trianglelefteq \Gamma \vdash_{\delta} Y} \quad tcut$$

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

The equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ} requires more assumptions.

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

The equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ} requires more assumptions.

We say that (\leq, δ) is **safe** if for all X, Y such that $X \leq Y$, we have

- $\delta X \leq \delta Y$ in BCD_{\leq} , or
- an IS_{\leq} -derivation $\tau_{X,Y}$ of $\delta X \trianglelefteq \vdash \delta Y$.

$$\begin{array}{ccc} X & \xrightarrow{\leq} & Y \\ \downarrow \zeta & & \downarrow \zeta \\ \delta X & \xrightarrow{\textcolor{blue}{\trianglelefteq}} & \delta Y \\ & \textcolor{red}{\triangleleft} & \end{array}$$

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

The equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ} requires more assumptions.

We say that (\leq, δ) is **safe** if for all X, Y such that $X \leq Y$, we have

- $\delta X \leq \delta Y$ in BCD_{\leq} , or
- an IS_{\leq} -derivation $\tau_{X,Y}$ of $\delta X \trianglelefteq \vdash \delta Y$.

$$\begin{array}{ccc} X & \xrightarrow{\leq} & Y \\ \downarrow \iota & & \downarrow \iota \\ \delta X & \xrightarrow{\trianglelefteq} & \delta Y \\ & \textcolor{blue}{\triangleleft} & \textcolor{red}{\triangleright} \end{array}$$

We say that δ is η -**safe** if δX is an intersection of arrow types for all X .

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

The equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ} requires more assumptions.

We say that (\leq, δ) is **safe** if for all X, Y such that $X \leq Y$, we have

- $\delta X \leq \delta Y$ in BCD_{\leq} , or
- an IS_{\leq} -derivation $\tau_{X,Y}$ of $\delta X \trianglelefteq \vdash \delta Y$.

$$\begin{array}{ccc} X & \xrightarrow{\leq} & Y \\ \downarrow \zeta & & \downarrow \zeta \\ \delta X & \xrightarrow{\trianglelefteq} & \delta Y \\ & \textcolor{blue}{\triangleleft} & \textcolor{red}{\triangleright} \end{array}$$

We say that δ is η -**safe** if δX is an intersection of arrow types for all X .

In the following, we assume that (\leq, δ) is *safe*.

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

Thanks to the safety of (\leq, δ) , an IS_{\leq} -derivation ρ can be mapped into an IS_{\leq}^{δ} -derivation $\bar{\rho}$. Consider the (\leq) leaves of ρ :

$$X \leq Y \frac{X \trianglelefteq \vdash Y}{\vdash} \leq \quad \mapsto \quad X \leq Y \frac{\overline{\tau_{X,Y}}}{\frac{\delta X \trianglelefteq \vdash_{\delta} \delta Y}{\frac{X \trianglelefteq \vdash_{\delta} Y}{X \trianglelefteq \vdash_{\delta} Y}}} AR, AL$$
$$CP$$

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

Thanks to the safety of (\leq, δ) , an IS_{\leq} -derivation ρ can be mapped into an IS_{\leq}^{δ} -derivation $\bar{\rho}$. Consider the (\leq) leaves of ρ :

$$X \leq Y \frac{X \trianglelefteq \vdash Y}{X \trianglelefteq \vdash Y} \leq \quad \mapsto \quad X \leq Y \frac{\overline{\tau_{X,Y}}}{\frac{\delta X \trianglelefteq \vdash_{\delta} \delta Y}{\frac{X \trianglelefteq \vdash_{\delta} Y}{X \trianglelefteq \vdash_{\delta} Y}}} AR, AL$$
$$CP$$

In particular, for all X and Y such that $X \leq Y$, there is an IS_{\leq}^{δ} -derivation $\pi_{X,Y}$ of $X \trianglelefteq \vdash_{\delta} Y$.

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

Thanks to the safety of (\leq, δ) , an IS_{\leq} -derivation ρ can be mapped into an IS_{\leq}^{δ} -derivation $\bar{\rho}$. Consider the (\leq) leaves of ρ :

$$X \leq Y \frac{X \trianglelefteq \vdash Y}{X \trianglelefteq \vdash Y} \leq \rightarrow X \leq Y \frac{\overline{\tau_{X,Y}}}{\frac{\delta X \trianglelefteq \vdash_{\delta} \delta Y}{\frac{X \trianglelefteq \vdash_{\delta} Y}{X \trianglelefteq \vdash_{\delta} Y}}} AR, AL$$
$$CP$$

In particular, for all X and Y such that $X \leq Y$, there is an IS_{\leq}^{δ} -derivation $\pi_{X,Y}$ of $X \trianglelefteq \vdash_{\delta} Y$.

Also, for all A , there is an IS_{\leq}^{δ} -derivation of $A \trianglelefteq \vdash_{\delta} A$.

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

Theorem

If we have $A \leq B$ in BCD_{\leq}^{δ} then $A \trianglelefteq \vdash_{\delta} B$ has an IS_{\leq}^{δ} -derivation.

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

Theorem

If we have $A \leq B$ in BCD_{\leq}^{δ} then $A \trianglelefteq \vdash_{\delta} B$ has an IS_{\leq}^{δ} -derivation.

Proof.

By induction on the definition of \leq .

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

Theorem

If we have $A \leq B$ in BCD_{\leq}^{δ} then $A \trianglelefteq \vdash_{\delta} B$ has an IS_{\leq}^{δ} -derivation.

Proof.

By induction on the definition of \leq .

$$\begin{array}{c} X \leq Y \quad \frac{}{X \leq Y} \\ \downarrow \\ A \leq B \quad B \leq C \quad \frac{}{A \leq C} \\ \downarrow \\ \frac{}{X \leq \delta X} \end{array} \quad \begin{array}{c} \pi_{X,Y} \\ \downarrow \\ A \trianglelefteq \vdash_{\delta} B \quad B \trianglelefteq \vdash_{\delta} C \quad tcut \\ \downarrow \\ A \trianglelefteq \vdash_{\delta} C \\ \downarrow \\ \frac{\delta X \trianglelefteq \vdash_{\delta} \delta X}{X \trianglelefteq \vdash_{\delta} \delta X} \quad AL \end{array}$$

□

Equivalence between BCD_{\leq}^{δ} and IS_{\leq}^{δ}

Theorem

If we have $A \leq B$ in BCD_{\leq}^{δ} then $A \trianglelefteq \vdash_{\delta} B$ has an IS_{\leq}^{δ} -derivation.

Proof.

By induction on the definition of \leq .

$$\begin{array}{c} X \leq Y \quad \frac{}{X \leq Y} \\ \downarrow \\ A \leq B \quad B \leq C \quad \frac{}{A \leq C} \\ \downarrow \qquad \downarrow \\ \frac{}{X \leq \delta X} \quad \frac{A \trianglelefteq \vdash_{\delta} B \quad B \trianglelefteq \vdash_{\delta} C}{A \trianglelefteq \vdash_{\delta} C} \quad tcut \\ \downarrow \\ \frac{\delta X \trianglelefteq \vdash_{\delta} \delta X}{X \trianglelefteq \vdash_{\delta} \delta X} \quad AL \end{array}$$

□

Theorem

If $A \trianglelefteq \vdash_{\delta} B$ has an IS_{\leq}^{δ} -derivation then we have $A \leq B$ in BCD_{\leq}^{δ} .

β - and η -conditions

Thanks to the structure of $\text{IS}_{\leq}^{\delta}$ -derivations, the following lemma is easy to prove.

Lemma (Generalized β -condition for $\text{IS}_{\leq}^{\delta}$)

The following property holds in $\text{IS}_{\leq}^{\delta}$:

$$\bigcap_{i \in I} A_i \rightarrow B_i \trianglelefteq A, \Gamma \vdash_{\delta} B \implies \exists J \subseteq I, \quad A \trianglelefteq \vdash_{\delta} \bigcap_{j \in J} A_j \quad \wedge \quad \bigcap_{j \in J} B_j \trianglelefteq \Gamma \vdash_{\delta} B$$

β - and η -conditions

Thanks to the structure of $\text{IS}_{\leq}^{\delta}$ -derivations, the following lemma is easy to prove.

Lemma (Generalized β -condition for $\text{IS}_{\leq}^{\delta}$)

The following property holds in $\text{IS}_{\leq}^{\delta}$:

$$\bigcap_{i \in I} A_i \rightarrow B_i \trianglelefteq A, \Gamma \vdash_{\delta} B \implies \exists J \subseteq I, \quad A \trianglelefteq \vdash_{\delta} \bigcap_{j \in J} A_j \quad \wedge \quad \bigcap_{j \in J} B_j \trianglelefteq \Gamma \vdash_{\delta} B$$

Hence, $\text{BCD}_{\leq}^{\delta}$ satisfies the β -condition.

β - and η -conditions

Thanks to the structure of $\text{IS}_{\preccurlyeq}^{\delta}$ -derivations, the following lemma is easy to prove.

Lemma (Generalized β -condition for $\text{IS}_{\preccurlyeq}^{\delta}$)

The following property holds in $\text{IS}_{\preccurlyeq}^{\delta}$:

$$\bigcap_{i \in I} A_i \rightarrow B_i \trianglelefteq A, \Gamma \vdash_{\delta} B \implies \exists J \subseteq I, \quad A \trianglelefteq \vdash_{\delta} \bigcap_{j \in J} A_j \quad \wedge \quad \bigcap_{j \in J} B_j \trianglelefteq \Gamma \vdash_{\delta} B$$

Hence, $\text{BCD}_{\preccurlyeq}^{\delta}$ satisfies the β -condition.

The η -condition is an immediate consequence of the η -safety.

Comparing with strong β systems

In the literature, one can find the following definition of strong β systems.

Definition 5 (Strong beta preorders). A type preorder Σ^\triangleright is *strong beta* if $\triangleright = \mathcal{BCD} \cup \triangleright^-$ and:

(1) \triangleright^- contains no rule and only axioms of one of the following two shapes:

- $\psi \leqslant \psi'$,
- $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$,

where $\psi, \psi', \psi_i^{(1)}, \psi_i^{(2)} \in \mathbb{C}^\triangleright$, and $\psi, \psi', \psi_i^{(2)} \not\equiv \Omega$ for all $i \in I$;

(2) for each $\psi \in \mathbb{C}^\triangleright$ such that $\psi \not\equiv \Omega$ there is exactly one axiom in \triangleright^- of the shape $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$;

(3) let \triangleright^- contain $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$ and $\psi' \sim \bigcap_{j \in J} (\psi_j'^{(1)} \rightarrow \psi_j'^{(2)})$. Then \triangleright^- contains also $\psi \leqslant \psi'$ iff for each $j \in J$ there exists $i \in I$ such that $\psi_j'^{(1)} \leqslant \psi_i^{(1)}$ and $\psi_i^{(2)} \leqslant \psi_j'^{(2)}$ are both in \triangleright^- .

Comparing with strong β systems

In the literature, one can find the following definition of strong β systems.

Definition 5 (Strong beta preorders). A type preorder Σ^\triangleright is *strong beta* if $\triangleright = \mathcal{BCD} \cup \triangleright^-$ and:

(1) \triangleright^- contains no rule and only axioms of one of the following two shapes:

- $\psi \leqslant \psi'$,
- $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$,

where $\psi, \psi', \psi_i^{(1)}, \psi_i^{(2)} \in \mathbb{C}^\triangleright$, and $\psi, \psi', \psi_i^{(2)} \not\equiv \Omega$ for all $i \in I$;

(2) for each $\psi \in \mathbb{C}^\triangleright$ such that $\psi \not\equiv \Omega$ there is exactly one axiom in \triangleright^- of the shape $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$;

(3) let \triangleright^- contain $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$ and $\psi' \sim \bigcap_{j \in J} (\psi_j'^{(1)} \rightarrow \psi_j'^{(2)})$. Then \triangleright^- contains also $\psi \leqslant \psi'$ iff for each $j \in J$ there exists $i \in I$ such that $\psi_j'^{(1)} \leqslant \psi_i^{(1)}$ and $\psi_i^{(2)} \leqslant \psi_j'^{(2)}$ are both in \triangleright^- .

Proposition

Strong β systems satisfy the β - and η -conditions.

Comparing with strong β systems

In the literature, one can find the following definition of strong β systems.

Definition 5 (Strong beta preorders). A type preorder Σ^∇ is *strong beta* if $\nabla = \mathcal{BCD} \cup \nabla^-$ and:

(1) ∇^- contains no rule and only axioms of one of the following two shapes:

- $\psi \leqslant \psi'$,
- $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$,

where $\psi, \psi', \psi_i^{(1)}, \psi_i^{(2)} \in \Sigma^\nabla$, and $\psi, \psi', \psi_i^{(2)} \not\equiv \Omega$ for all $i \in I$;

(2) for each $\psi \in \Sigma^\nabla$ such that $\psi \not\equiv \Omega$ there is exactly one axiom in ∇^- of the shape $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$;

(3) let ∇^- contain $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$ and $\psi' \sim \bigcap_{j \in J} (\psi_j'^{(1)} \rightarrow \psi_j'^{(2)})$. Then ∇^- contains also $\psi \leqslant \psi'$ iff for each $j \in J$ there exists $i \in I$ such that $\psi_j'^{(1)} \leqslant \psi_i^{(1)}$ and $\psi_i^{(2)} \leqslant \psi_j'^{(2)}$ are both in ∇^- .

Proposition

Strong β systems satisfy the β - and η -conditions.

if $(\bigcap_{i \in I} (A_i \rightarrow B_i)) \cap (\bigcap_{h \in H} \psi_h) \leqslant_\nabla (\bigcap_{j \in J} (C_j \rightarrow D_j)) \cap (\bigcap_{k \in K} \varphi_k)$, then $\forall j \in J. (\bigcap_{i \in I'} B_i) \cap (\bigcap_{h \in H'} (\bigcap_{l \in L(\psi_h)} \xi_l^{(\psi_h)}) \leqslant_\nabla D_j$ where $I' = \{i \in I \mid C_j \leqslant_\nabla A_i\}$, $L(\psi_h)' = \{l \in L(\psi_h) \mid C_j \leqslant_\nabla \xi_l^{(\psi_h)}\}$, $H' = \{h \in H \mid L(\psi_h)' \neq \emptyset\}$;

Comparing with strong β systems

In the literature, one can find the following definition of strong β systems.

Definition 5 (Strong beta preorders). A type preorder Σ^∇ is *strong beta* if $\nabla = \mathcal{BCD} \cup \nabla^-$ and:

(1) ∇^- contains no rule and only axioms of one of the following two shapes:

- $\psi \leqslant \psi'$,
- $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$,

where $\psi, \psi', \psi_i^{(1)}, \psi_i^{(2)} \in \Sigma^\nabla$, and $\psi, \psi', \psi_i^{(2)} \not\equiv \Omega$ for all $i \in I$;

(2) for each $\psi \in \Sigma^\nabla$ such that $\psi \not\equiv \Omega$ there is exactly one axiom in ∇^- of the shape $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$;

(3) let ∇^- contain $\psi \sim \bigcap_{i \in I} (\psi_i^{(1)} \rightarrow \psi_i^{(2)})$ and $\psi' \sim \bigcap_{j \in J} (\psi_j'^{(1)} \rightarrow \psi_j'^{(2)})$. Then ∇^- contains also $\psi \leqslant \psi'$ iff for each $j \in J$ there exists $i \in I$ such that $\psi_j'^{(1)} \leqslant \psi_i^{(1)}$ and $\psi_i^{(2)} \leqslant \psi_j'^{(2)}$ are both in ∇^- .

Proposition

Strong β systems satisfy the β - and η -conditions.

if $(\bigcap_{i \in I} (A_i \rightarrow B_i)) \cap (\bigcap_{h \in H} \psi_h) \leqslant_\nabla (\bigcap_{j \in J} (C_j \rightarrow D_j)) \cap (\bigcap_{k \in K} \varphi_k)$, then $\forall j \in J. (\bigcap_{i \in I'} B_i) \cap (\bigcap_{h \in H'} (\bigcap_{l \in L(\psi_h)} \xi_l^{(\psi_h)})) \leqslant_\nabla D_j$ where $I' = \{i \in I \mid C_j \leqslant_\nabla A_i\}$, $L(\psi_h)' = \{l \in L(\psi_h) \mid C_j \leqslant_\nabla \xi_l^{(\psi_h)}\}$, $H' = \{h \in H \mid L(\psi_h)' \neq \emptyset\}$;

Proposition

If \mathcal{S} is a strong β system, there exists a safe and η -safe pair (\leqslant, δ) such that \mathcal{S} is $\mathcal{BCD}_{\leqslant}^\delta$.

Instances

We have already seen:

Name	Atoms	\prec	δ
BCD	\mathcal{A}	\emptyset	$\delta X := X$
Scott	\mathcal{A}	\emptyset	$\delta X := \Omega \rightarrow X$
Park	\mathcal{A}	\emptyset	$\delta X := X \rightarrow X$
CDZ	\mathbb{B}	$\varphi \prec \psi$	$\delta \varphi := \psi \rightarrow \varphi$
HR	\mathbb{B}	$\varphi \prec \psi$	$\delta \varphi := \psi \rightarrow \varphi$
DHM	\mathbb{B}	$\varphi \prec \psi$	$\delta \varphi := \Omega \rightarrow \varphi$
TLCA	\mathbb{B}	\emptyset	$\delta \varphi := \psi \rightarrow \varphi$

Instances

We have already seen:

Name	Atoms	\prec	δ	
BCD	\mathcal{A}	\emptyset	$\delta X := X$	
Scott	\mathcal{A}	\emptyset	$\delta X := \Omega \rightarrow X$	
Park	\mathcal{A}	\emptyset	$\delta X := X \rightarrow X$	
CDZ	\mathbb{B}	$\varphi \prec \psi$	$\delta \varphi := \psi \rightarrow \varphi$	$\delta \psi := \varphi \rightarrow \psi$
HR	\mathbb{B}	$\varphi \prec \psi$	$\delta \varphi := \psi \rightarrow \varphi$	$\delta \psi := (\varphi \rightarrow \varphi) \cap (\psi \rightarrow \psi)$
DHM	\mathbb{B}	$\varphi \prec \psi$	$\delta \varphi := \Omega \rightarrow \varphi$	$\delta \psi := \varphi \rightarrow \psi$
TLCA	\mathbb{B}	\emptyset	$\delta \varphi := \psi \rightarrow \varphi$	$\delta \psi := (\psi \rightarrow \psi) \cap (\varphi \rightarrow \psi)$

We can also consider:

Atoms	\prec	δ		
\mathbb{T}	$\varphi \prec \psi$	$\delta \varphi := \Omega \rightarrow \varphi$	$\delta \psi := \Omega \rightarrow \psi$	$\delta \kappa := \varphi \rightarrow \psi$
\mathbb{T}	$\varphi \prec \psi$	$\delta \varphi := \kappa \rightarrow \varphi$	$\delta \psi := \kappa \rightarrow \psi$	$\delta \kappa := \kappa \rightarrow \kappa$
\mathbb{B}	$\varphi \prec \psi$	$\delta \varphi := (\varphi \rightarrow \varphi \rightarrow \varphi) \cap (\varphi \rightarrow \varphi \rightarrow \psi)$		$\delta \psi := \varphi \rightarrow \varphi \rightarrow (\varphi \cap \psi)$
\mathbb{T}	$\varphi \prec \psi$	$\delta \varphi := (\varphi \rightarrow \varphi \rightarrow \kappa) \cap (\varphi \rightarrow \psi \rightarrow \psi)$		$\delta \psi := \varphi \rightarrow \varphi \rightarrow (\kappa \cap \psi)$
:	:	$\delta \kappa := \kappa \rightarrow \kappa$:

where $\mathbb{T} = \{\varphi, \psi, \kappa\}$.

Conclusion and future directions

We have used techniques from proof theory to build transitivity-free presentations of a broad class of intersection subtyping systems with fixpoint equations. In particular, we generalize the “strong beta condition” to give a generic proof of the β -condition for subtyping.

Conclusion and future directions

We have used techniques from proof theory to build transitivity-free presentations of a broad class of intersection subtyping systems with fixpoint equations. In particular, we generalize the “strong beta condition” to give a generic proof of the β -condition for subtyping.

Two future directions:

- Investigating induced *filter models* to understand the expressiveness of our framework.
- Extending our systems to accomodate more connectives/type constructors.

Natural candidate: universal quantification $(\forall) \rightarrow$ polymorphic subtyping.

Conclusion and future directions

We have used techniques from proof theory to build transitivity-free presentations of a broad class of intersection subtyping systems with fixpoint equations. In particular, we generalize the “strong beta condition” to give a generic proof of the β -condition for subtyping.

Two future directions:

- Investigating induced *filter models* to understand the expressiveness of our framework.
- Extending our systems to accomodate more connectives/type constructors.

Natural candidate: universal quantification $(\forall) \rightarrow$ polymorphic subtyping.

Thank you for your listening!