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Intersection types
Intersection types are introduced to extend simple types of the A-calculus.

A:=X|A-B|AnB

N is associative and commutative.
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Intersection types

Intersection types are introduced to extend simple types of the A-calculus.

A:=X|A-B|AnB

N is associative and commutative.

Intersection type systems

® allow typing more terms and characterizing various qualitative
properties of reduction, such as strong normalization;

® yield models of the A-calculus called filter models,
® provide a way to study quantitative properties of reduction, such as

the number of reduction steps — non-idempotent intersection types.

In this talk, N is idempotent, that is, An A~ A.
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Intersection type systems: typing

We consider extensions of the BCD intersection type system [1983].

A:=X|A—>B|AnB|Q
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Intersection type systems: typing

We consider extensions of the BCD intersection type system [1983].

A:=X|A—>B|AnB|Q

These extensions share the same set of typing rules but differ in the
subtyping relation < that parameterized them.

var r,X:AFt:B

——  abs
N-Xx.t:A-> B

Mx:Arx:A

[+t:A-> B rl—u:Aa
Ml—tu:B

PP

lt:A T+t:B

inter o 9mg
F-t:AnB Met:Q

MlN-t:A ASBS
—t:B

ub
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Intersection type systems: subtyping

The subtyping relation includes the following rules:

A<A T A<C A<Q

A<C B<D
AnB<A AnB<B A<ANnA AnB<CnD

C<A Bx<D -

We write A~ B if A< B and B<A.
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Properties of intersection type systems

It is known from the literature that we always have:
® subject 3-expansion: if t »guthenlN-u:A=Trt: A
* subject n-reduction: if t -, uthen T-t:A=T+ru: A
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* subject n-reduction: if t -, uthen T-t:A=T+ru: A

To obtain models for 8- and/or n-conversions, we also need:
* subject S-reduction: if t sguthenl-t:A=Tru:A
* subject n-expansion: if t -, uthen-u:A=>Trt: A
- we can define [t] as the set {(I, A) | I+ t: A}.

These properties require additional assumptions.
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[-condition n-condition

The 3-condition, stated as follows,

NA - Bi<A->B — 3Jcl, A<A A~ B <B ()
iel jed jed

entails subject S-reduction.
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[-condition n-condition

The 3-condition, stated as follows,

NA - Bi<A->B — 3Jcl, A<A A~ B <B ()
iel jed jed

entails subject S-reduction.
Only subtyping is involved!
However, checking the S-condition is still complicated...

(ii) By induction on the definition of < one can show for n, n’, m, m’ > 0 that
forall /e {1, ..., n'} one has
[(r=v) N - N = v) Nosy N -+ Noy,
<@~ N - New—m)Np N - NN Nao
andg # o= iy, ..., e {l, ..,n} i N N, =0y
andy, N -+ Ny, <7
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n-condition and extensions of BCD subtyping
The n-condition, stated as follows,

VX eA, 3(A)ier(Bi)iet, X~[)Ai— B (n)

iel

is equivalent to subject n-expansion.
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n-condition and extensions of BCD subtyping

The n-condition, stated as follows,

VX eA, 3(A)ier(Bi)iet, X~[)Ai— B (n)

iel
is equivalent to subject n-expansion.

Here are some systems from the literature we will be able to address:

Name Atoms Additional axioms B n
BCD A v

Scott A X~Q-X v v
Park A X~X-=X v
bz B <9y potp>p oo v v
HR B  ¢<¢ prop Yr(poo)n@-y) v
DHM B p<Y o~ Qo Y~ v v
TLCA B prh oo Y~ oY)n(p-yY) VOV

where B = {¢, 1}
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Toward a transitivity-free presentation

Why is it so difficult to check the B-condition?
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Toward a transitivity-free presentation

Why is it so difficult to check the B-condition?

We cannot simply remove this rule.
Example: C - (AnB)<(C—->A)n(C - B)

What about a sequent calculus for subtyping?

In 1989, Pierce proposed an algorithm for BCD subtyping, which can
actually be presented as a sequent-style system.
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The sequent system IS

Sequents: A4T + B, where I is a list of types.
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— ax — Q
X4 X Calr+Q
C«alr+A Cﬂl’l—Bm
Cal-AnB

Adl+C B«al+C
ﬂl_]_ ﬂLz
AnB<4al+C AnBal+C
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The sequent system IS

Sequents: AdT + B, where I is a list of types.
Interpreting sequents: [A<A;,...,Ap+-B]=A<A; > > A,—>B.

Xex X CreQ

C,T-A C(CT+B
NR
C.T'-AnB

ATr+C [ B,T+C

NLy Nl
AnB,T+C AnB,T+C

C,IA+-B R C+-A BT+D
_ =
C,T-A-B A-B,C,T+D

—
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The sequent system IS

Sequents: AdT + B, where I is a list of types.
Interpreting sequents: [A<A;,...,Ap+-B]=A<A; > > A,—>B.

T

Xrx & CreT

C,T'--A (CT+B
C,T~ A&B

&R

ATrC [ B,I'-cC
ABT-C " AB.T+C

—o

C,lIA+-B R C-rA B,IT+D
C,T'-A—B A—-B C.I'+D
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The sequent system IS

Sequents: A< T + B, where I is a list of types.
Interpreting sequents: [A<QAy,...,Ap+-B]=A<A; > > A, > B.

ax — Q
X<X C<I-=0aQ
C<I—-A C<I—-B
NR
C<I-AnB

A<l > C AL B<lI-==C
AnB<l->C ' AnB<l—C

C<I-A->B C<A B<I-=>D
-  °  — SR —
C<Ir-A--B A->B<C->T->D

ﬂLQ

L
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Cuts admissibility and equivalence

Theorem (Cuts admissibility)

The following cut rules are admissible in 1S:

Adl+B leAl—CtCut Ad+B C4al,B,A+D
AQl ArC CalAJ/A-D

scut
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Cuts admissibility and equivalence

Theorem (Cuts admissibility)

The following cut rules are admissible in 1S:

Adl+B BgAI—CtCut Ad+B C4al,B,A+D
AQl ArC CalAJ/A-D

scut

Theorem (Equivalence between BCD and IS)
We have A< B in BCD if and only if Ad + B has an |S-derivation.

We can extend BCD and IS with a preorder < on atoms, by adding the
following two rules, respectively. This yields the systems BCDg and 1S«.

X<Y X<Y

— <
X<Y XarY
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BCD? and the non-wellfounded system 152

In addition to <, we consider a function § from atoms to types that
defines " fixpoint” equations X ~ §X.
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BCD? and the non-wellfounded system 1S?

In addition to <, we consider a function § from atoms to types that
defines " fixpoint” equations X ~ §X.

BCD? extends BCD< with the following rules:

X <oX oX <X
ISS extends IS< by adding the following unfolding rules:

X<ar B Adarl X
0X < s _AL d |—55

A A2 5508 UR
X4al+s B Adls X

and by replacing the (<) rule with the following checkpoint rule:
XdrsY

XY — CP
XdrsY
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IS2-derivations
An IS2-derivation is a possibly infinite tree built with the rules of 15%
such that:
on each infinite branch, there are infinitely many checkpoints, and there

are exactly one (\AL) and exactly one (\AR) between any two consecutive
checkpoints of any branch.
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Cuts admissibility

Theorem
The following two cut rules are admissible in 1S :

AdlT+B B<4A+C Ad+B C4al B,ArD
tcut

scut
A<T,A+C C<l A A+D
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Cuts admissibility

Theorem
The following two cut rules are admissible in 1S :

AsT-B BaArC,  A<+B Ca[BArD
AT, A+ C Cal,AA+D

scut

Proof sketch:

We define two measures, pw(:) and fw(-), on the number of rules and
the number of unfolding rules within the prefix of an ISi—derivation.
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Cuts admissibility

Theorem
The following two cut rules are admissible in 1S :

AsT-B BaArC,  A<+B Ca[BArD
AT, A+ C Cal,AA+D

scut

Proof sketch:

We define two measures, pw(:) and fw(-), on the number of rules and
the number of unfolding rules within the prefix of an ISi—derivation.

We then prove the two admissibilities by mutual induction on (f,s, p)
where f = fw(m) + fw(mo), s = size(B) and p = pw(m1) + pw(ma).
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Cut elimination: some cases

Cal A5 B Da+rsA BIAE
-
Calrrs A—B A>BaD,Arg E
CalD,A+s E

—L
tcut

A4l 56X SXd4Ar; B
AdT 5 X XaArs B
A4, Avs B

AL
tcut

X4 Y Y« z
X<y 229 op yizrEiRss
XdrsY Yﬂk,;Zt

Xd w52

cut

Asll'k,;tSXAR XsYXﬂWYCP
Adl-s X XdrsY

AdTrs Y

DarsA C<aT,ArsB

Cal,D,Ars E

AdT 56X  OXaAvs B

———————————————————————— teut
AdT,Avs B

XarY YarsZ

""" X,z

X<zZZD% ¢p
XdwrsZ

AdlT k50X 6XQ rH50Y
AdT r58Y feut
27 0T 4R
AdlTrs Y
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Equivalence between BCD? and IS¢

The equivalence between BCDg and ISZ requires more assumptions.
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Equivalence between BCD? and IS¢

The equivalence between BCD‘; and ISZ requires more assumptions.

We say that (x, d) is safe if for all X, Y such that X <Y, we have
® /X <dY in BCDg, or

® an |S¢-derivation 7x y of X <4 Y.

<

X—Y

2 2
<

X — 8Y
d

We say that ¢ is n-safe if §X is an intersection of arrow types for all X.

In the following, we assume that (x,¢) is safe.
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Equivalence between BCD? and IS¢

Thanks to the safety of (x,¢), an IS<-derivation p can be mapped into
an IS%-derivation 5. Consider the (<) leaves of p:

XY
0Xd +s50Y
S XdrsY
X<Y — CP
X<drsY
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4= XdrsY
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Equivalence between BCD? and IS¢

Thanks to the safety of (x,¢), an IS<-derivation p can be mapped into
an IS%-derivation 5. Consider the (<) leaves of p:

TX,Y
0X A H50Y
4= XdrsY
XY — CP
X<drsY

In particular, forall X and Y such that X <Y/, there is an ISi—derivation
TX,Y of X4 5 Y.

Also, forall A, there is an ISi—derivation of Ad 5 A.
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Equivalence between BCD? and IS¢

Theorem
If we have A< B in BCDS then A< +4 B has an 1S%-derivation.
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Equivalence between BCD? and IS¢

Theorem
If we have A< B in BCDS then A< +4 B has an 1S%-derivation.
Proof.
By induction on the definition of <.
XY X<y > TX,Y
A<B B<C AdrsB  Bd+;C
_— > tcut
A<C Ad 5 C
OX 4 50X L
X <oX X 9 50X
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Equivalence between BCD? and IS¢

Theorem

If we have A< B in BCDS then A< +4 B has an 1S%-derivation.

Proof.

By induction on the definition of <.

Theorem

X 50X

TX,Y
Ad +s B Bawrs C

Ad s C

0X 4 oX
d 5 AL

If A< 5 B has an 1SS-derivation then we have A < B in BCDZ.

tcu

t



(- and n-conditions

Thanks to the structure of ISi—derivations, the following lemma is easy to
prove.

Lemma (Generalized 3-condition for 1S2)
The following property holds in 1S2:

ﬂA,-—>B,-31A,I'|—58 = 3JJcl, A< l—gmAj A mBjﬂrl—gB
iel jeJ jed
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(- and n-conditions

Thanks to the structure of ISi—derivations, the following lemma is easy to
prove.

Lemma (Generalized 3-condition for 1S2)
The following property holds in 1S2:

ﬂA,-—>B,-31A,I'|—58 = 3JJcl, Ad l—(;mAj A mBjﬂrl—gB
iel jeJ jed

Hence, BCD? satisfies the 3-condition.

The n-condition is an immediate consequence of the n-safety.
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Comparing with strong (3 systems

In the literature, one can find the following definition of strong 3 systems.

Definition 5 (Strong beta preorders). A type preorder XV is strong beta if 7 = BCD U 57~ and:
(1) 7~ contains no rule and only axioms of one of the following two shapes:
o Yy,
1 2
o ¥~ M@ = 9,
where Y, ¢/, ¥, yPeCV, and y, v/, y? £ Qforalliel;
(2) for each i € CV such that i # Q there is exactly one axiom in 7~ of the shape i ~ ﬂiE,(\l/gl) — ‘//;2));
(3) let 7~ contain § ~ ﬂiel(lj/}]) — l//}z)) and y/ ~ ﬂ/E,(Wj(]) — 11/’1.(2)). Then 7~ contains also <y’ iff for
each jeJ there exists i€/ such that lﬁ;(l) < w;l) and wf” < x//’j(2> are both in 7.
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(3) let 7~ contain § ~ ﬂiel(lj/?) — 111}2)) and y/ ~ ﬂ/E,(Wj(]) — 11/’1.(2)). Then 7~ contains also <y’ iff for
each jeJ there exists i€/ such that lﬁ;(l) < l//lw and wf” < x//’j(2> are both in 7.

Proposition
Strong (B systems satisfy the [3- and n-conditions.
i (Nier (Ai = BNN(Mher Vi) <v (Njes(Cj = DNk @1)» thenVjet . (Nicp BON(Mner (Myepon

{9y <Dy where I = {iel | C; <y A}, LYW = {IeLW | C;< &), B = (heH | LW £ );

Proposition

If S is a strong 3 system, there exists a safe and n-safe pair (<,0) such
that S is BCDS.
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Instances

We have already seen:

Name Atoms < 1)

BCD A 7] oX =X

Scott A %) 0X=Q-X

Park A 1%} X =X->X

Cbz B p<YP dp:=1 = 0=

HR B p<ty  dp=ypop 6= (p>p)n (> )
DHM B <1 dp=Q-0 =>4

TLCA B @ Spi=1h—> ¢ 6= (Y —>P)n(p 1)

21/23



Instances

We have already seen:

Name Atoms < 1)

BCD A 7] oX =X

Scott A %) 0X=Q-X

Park A 1%} X =X->X

Cbz B p<YP (5(p::’(/}—>(p 0=

HR B p<ty  dp=ypop 6= (p>p)n (> )
DHM B <1 dp=Q-0 =>4

TLCA B @ Spi=1h—> ¢ 6= (Y —>P)n(p 1)

We can also consider:

Atoms < 5
T p<tp  dp=Q->p OP=Q-ov¢ Sk=p-ov
T © < dpi=Kk—> SYi=k—> Y K=Kk > K
% p<ty  dp=(poreo@)n(pop—-yY) W= (pny)

p<v

0K

where T = {¢, 9,k }.

=R KR

bp=(p>p>mn(p=b=v) bsbi=pp-(xny)
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Conclusion and future directions

We have used techniques from proof theory to build transitivity-free
presentations of a broad class of intersection subtyping systems with
fixpoint equations. In particular, we generalize the “strong beta
condition” to give a generic proof of the -condition for subtyping.
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Conclusion and future directions

We have used techniques from proof theory to build transitivity-free
presentations of a broad class of intersection subtyping systems with
fixpoint equations. In particular, we generalize the “strong beta
condition” to give a generic proof of the -condition for subtyping.

Two future directions:
® Investigating induced filter models to understand the expressiveness
of our framework.

® Extending our systems to accomodate more connectives/type
constructors.
Natural candidate: universal quantification (V) — polymorphic
subtyping.
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Thank you for your listening!
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