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Intersection types

Intersection types are introduced to extend simple types of the λ-calculus.

A ∶∶= X ∣ A→ B ∣ A ∩B

∩ is associative and commutative.

Intersection type systems

● allow typing more terms and characterizing various qualitative
properties of reduction, such as strong normalization;

● yield models of the λ-calculus called filter models;

● provide a way to study quantitative properties of reduction, such as
the number of reduction steps ↪ non-idempotent intersection types.

In this talk, ∩ is idempotent, that is, A ∩A ∼ A.
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Intersection type systems: typing

We consider extensions of the BCD intersection type system [1983].

A ∶∶= X ∣ A→ B ∣ A ∩B ∣ Ω

These extensions share the same set of typing rules but differ in the
subtyping relation ≤ that parameterized them.

var
Γ, x ∶ A ⊢ x ∶ A

Γ, x ∶ A ⊢ t ∶ B
abs

Γ ⊢ λx .t ∶ A→ B

Γ ⊢ t ∶ A→ B Γ ⊢ u ∶ A
app

Γ ⊢ t u ∶ B

Γ ⊢ t ∶ A Γ ⊢ t ∶ B
inter

Γ ⊢ t ∶ A ∩B
omg

Γ ⊢ t ∶ Ω

Γ ⊢ t ∶ A A ≤ B
sub

Γ ⊢ t ∶ B
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Intersection type systems: subtyping

The subtyping relation includes the following rules:

A ≤ A
A ≤ B B ≤ C

A ≤ C A ≤ Ω

A ∩B ≤ A A ∩B ≤ B A ≤ A ∩A
A ≤ C B ≤ D
A ∩B ≤ C ∩D

C ≤ A B ≤ D
A→ B ≤ C → D (C → A) ∩ (C → B) ≤ C → (A ∩B) Ω ≤ Ω→ Ω

We write A ∼ B if A ≤ B and B ≤ A.
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Properties of intersection type systems

It is known from the literature that we always have:

● subject β-expansion: if t →β u then Γ ⊢ u ∶ A⇒ Γ ⊢ t ∶ A.
● subject η-reduction: if t →η u then Γ ⊢ t ∶ A⇒ Γ ⊢ u ∶ A.

To obtain models for β- and/or η-conversions, we also need:

● subject β-reduction: if t →β u then Γ ⊢ t ∶ A⇒ Γ ⊢ u ∶ A.
● subject η-expansion: if t →η u then Γ ⊢ u ∶ A⇒ Γ ⊢ t ∶ A.

↪ we can define JtK as the set {(Γ,A) ∣ Γ ⊢ t ∶ A}.

These properties require additional assumptions.
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β-condition η-condition

The β-condition, stated as follows,

⋂
i∈I

Ai → Bi ≤ A→ B Ô⇒ ∃J ⊆ I , A ≤ ⋂
j∈J

Aj ∧ ⋂
j∈J

Bj ≤ B (β)

entails subject β-reduction.

Only subtyping is involved!

However, checking the β-condition is still complicated...
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η-condition and extensions of BCD subtyping

The η-condition, stated as follows,

∀X ∈ A, ∃(Ai)i∈I (Bi)i∈I , X ∼ ⋂
i∈I

Ai → Bi (η)

is equivalent to subject η-expansion.

Here are some systems from the literature we will be able to address:

Name Atoms Additional axioms β η
BCD A ✓
Scott A X ∼ Ω→ X ✓ ✓
Park A X ∼ X → X ✓ ✓
CDZ B φ ≤ ψ φ ∼ ψ → φ ψ ∼ φ→ ψ ✓ ✓
HR B φ ≤ ψ φ ∼ ψ → φ ψ ∼ (φ→ φ) ∩ (ψ → ψ) ✓ ✓
DHM B φ ≤ ψ φ ∼ Ω→ φ ψ ∼ φ→ ψ ✓ ✓
TLCA B φ ∼ ψ → φ ψ ∼ (ψ → ψ) ∩ (φ→ ψ) ✓ ✓

where B = {φ,ψ}.

8 / 23



η-condition and extensions of BCD subtyping

The η-condition, stated as follows,

∀X ∈ A, ∃(Ai)i∈I (Bi)i∈I , X ∼ ⋂
i∈I

Ai → Bi (η)

is equivalent to subject η-expansion.

Here are some systems from the literature we will be able to address:

Name Atoms Additional axioms β η
BCD A ✓
Scott A X ∼ Ω→ X ✓ ✓
Park A X ∼ X → X ✓ ✓
CDZ B φ ≤ ψ φ ∼ ψ → φ ψ ∼ φ→ ψ ✓ ✓
HR B φ ≤ ψ φ ∼ ψ → φ ψ ∼ (φ→ φ) ∩ (ψ → ψ) ✓ ✓
DHM B φ ≤ ψ φ ∼ Ω→ φ ψ ∼ φ→ ψ ✓ ✓
TLCA B φ ∼ ψ → φ ψ ∼ (ψ → ψ) ∩ (φ→ ψ) ✓ ✓

where B = {φ,ψ}.

8 / 23



Toward a transitivity-free presentation

Why is it so difficult to check the β-condition?

A ≤ B B ≤ C
A ≤ C

We cannot simply remove this rule.
Example: C → (A ∩B) ≤ (C → A) ∩ (C → B)

What about a sequent calculus for subtyping?

In 1989, Pierce proposed an algorithm for BCD subtyping, which can
actually be presented as a sequent-style system.
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The sequent system IS

Sequents: A ⊴ Γ ⊢ B, where Γ is a list of types.

Interpreting sequents: JA ⊴ A1, . . . ,An ⊢ BK = A ≤ A1 → ⋯→ An → B.

ax
X ⊢ X CΓ ⊢

CΓ ⊢ A CΓ ⊢ B
CΓ ⊢ AB

AΓ ⊢ C
ABΓ ⊢ C

BΓ ⊢ C
ABΓ ⊢ C

CΓ,A ⊢ B
CΓ ⊢ AB

C ⊢ A BΓ ⊢ D
ABC ,Γ ⊢ D
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Cuts admissibility and equivalence

Theorem (Cuts admissibility)
The following cut rules are admissible in IS:

A ⊴ Γ ⊢ B B ⊴∆ ⊢ C
tcut

A ⊴ Γ,∆ ⊢ C
A ⊴ ⊢ B C ⊴ Γ,B,∆ ⊢ D

scut
C ⊴ Γ,A,∆ ⊢ D

Theorem (Equivalence between BCD and IS)
We have A ≤ B in BCD if and only if A ⊴ ⊢ B has an IS-derivation.

We can extend BCD and IS with a preorder ≼ on atoms, by adding the
following two rules, respectively. This yields the systems BCD≼ and IS≼.

X ≺ Y
X ≤ Y

X ≼ Y ≼
X ⊴ ⊢ Y

11 / 23



Cuts admissibility and equivalence

Theorem (Cuts admissibility)
The following cut rules are admissible in IS:

A ⊴ Γ ⊢ B B ⊴∆ ⊢ C
tcut

A ⊴ Γ,∆ ⊢ C
A ⊴ ⊢ B C ⊴ Γ,B,∆ ⊢ D

scut
C ⊴ Γ,A,∆ ⊢ D

Theorem (Equivalence between BCD and IS)
We have A ≤ B in BCD if and only if A ⊴ ⊢ B has an IS-derivation.

We can extend BCD and IS with a preorder ≼ on atoms, by adding the
following two rules, respectively. This yields the systems BCD≼ and IS≼.

X ≺ Y
X ≤ Y

X ≼ Y ≼
X ⊴ ⊢ Y

11 / 23



Cuts admissibility and equivalence

Theorem (Cuts admissibility)
The following cut rules are admissible in IS:

A ⊴ Γ ⊢ B B ⊴∆ ⊢ C
tcut

A ⊴ Γ,∆ ⊢ C
A ⊴ ⊢ B C ⊴ Γ,B,∆ ⊢ D

scut
C ⊴ Γ,A,∆ ⊢ D

Theorem (Equivalence between BCD and IS)
We have A ≤ B in BCD if and only if A ⊴ ⊢ B has an IS-derivation.

We can extend BCD and IS with a preorder ≼ on atoms, by adding the
following two rules, respectively. This yields the systems BCD≼ and IS≼.

X ≺ Y
X ≤ Y

X ≼ Y ≼
X ⊴ ⊢ Y

11 / 23



BCDδ
≼ and the non-wellfounded system ISδ≼

In addition to ≼, we consider a function δ from atoms to types that
defines ”fixpoint” equations X ∼ δX .

BCDδ≼ extends BCD≼ with the following rules:

X ≤ δX δX ≤ X

ISδ≼ extends IS≼ by adding the following unfolding rules:

δX ⊴ Γ ⊢δ B AL
X ⊴ Γ ⊢δ B

A ⊴ Γ ⊢δ δX AR
A ⊴ Γ ⊢δ X

and by replacing the (≼) rule with the following checkpoint rule:

X ⊴ ⊢δ Y
X ≼ Y CP

X ⊴ ⊢δ Y

12 / 23



BCDδ
≼ and the non-wellfounded system ISδ≼

In addition to ≼, we consider a function δ from atoms to types that
defines ”fixpoint” equations X ∼ δX .

BCDδ≼ extends BCD≼ with the following rules:

X ≤ δX δX ≤ X

ISδ≼ extends IS≼ by adding the following unfolding rules:

δX ⊴ Γ ⊢δ B AL
X ⊴ Γ ⊢δ B

A ⊴ Γ ⊢δ δX AR
A ⊴ Γ ⊢δ X

and by replacing the (≼) rule with the following checkpoint rule:

X ⊴ ⊢δ Y
X ≼ Y CP

X ⊴ ⊢δ Y

12 / 23



BCDδ
≼ and the non-wellfounded system ISδ≼

In addition to ≼, we consider a function δ from atoms to types that
defines ”fixpoint” equations X ∼ δX .

BCDδ≼ extends BCD≼ with the following rules:

X ≤ δX δX ≤ X

ISδ≼ extends IS≼ by adding the following unfolding rules:

δX ⊴ Γ ⊢δ B AL
X ⊴ Γ ⊢δ B

A ⊴ Γ ⊢δ δX AR
A ⊴ Γ ⊢δ X

and by replacing the (≼) rule with the following checkpoint rule:

X ⊴ ⊢δ Y
X ≼ Y CP

X ⊴ ⊢δ Y

12 / 23



BCDδ
≼ and the non-wellfounded system ISδ≼

In addition to ≼, we consider a function δ from atoms to types that
defines ”fixpoint” equations X ∼ δX .

BCDδ≼ extends BCD≼ with the following rules:

X ≤ δX δX ≤ X

ISδ≼ extends IS≼ by adding the following unfolding rules:

δX ⊴ Γ ⊢δ B AL
X ⊴ Γ ⊢δ B

A ⊴ Γ ⊢δ δX AR
A ⊴ Γ ⊢δ X

and by replacing the (≼) rule with the following checkpoint rule:

X ⊴ ⊢δ Y
X ≼ Y CP

X ⊴ ⊢δ Y

12 / 23



ISδ≼-derivations
An ISδ≼-derivation is a possibly infinite tree built with the rules of ISδ≼
such that:
on each infinite branch, there are infinitely many checkpoints, and there
are exactly one (AL) and exactly one (AR) between any two consecutive
checkpoints of any branch.
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Cuts admissibility

Theorem
The following two cut rules are admissible in ISδ≼:

A ⊴ Γ ⊢ B B ⊴∆ ⊢ C
tcut

A ⊴ Γ,∆ ⊢ C
A ⊴ ⊢ B C ⊴ Γ,B,∆ ⊢ D

scut
C ⊴ Γ,A,∆ ⊢ D

Proof sketch:

We define two measures, pw(⋅) and fw(⋅), on the number of rules and
the number of unfolding rules within the prefix of an ISδ≼-derivation.

We then prove the two admissibilities by mutual induction on (f , s,p)
where f = fw(π1) + fw(π2), s = size(B) and p = pw(π1) + pw(π2).
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Cut elimination: some cases

C ⊴ Γ,A ⊢δ B →R
C ⊴ Γ ⊢δ A→ B

D ⊴ ⊢δ A B ⊴∆ ⊢δ E →L
A→ B ⊴ D,∆ ⊢δ E

tcut
C ⊴ Γ,D,∆ ⊢δ E

↝
D ⊴ ⊢δ A C ⊴ Γ,A ⊢δ B

scut
C ⊴ Γ,D ⊢δ B B ⊴∆ ⊢δ E

tcut
C ⊴ Γ,D,∆ ⊢δ E

A ⊴ Γ ⊢δ δX AR
A ⊴ Γ ⊢δ X

δX ⊴∆ ⊢δ B AL
X ⊴∆ ⊢δ B

tcut
A ⊴ Γ,∆ ⊢δ B

↝ A ⊴ Γ ⊢δ δX δX ⊴∆ ⊢δ B
tcut

A ⊴ Γ,∆ ⊢δ B

X ⊴ ⊢δ Y
X ≼ Y CP

X ⊴ ⊢δ Y
Y ⊴ ⊢δ Z

Y ≼ Z CP
Y ⊴ ⊢δ Z

tcut
X ⊴ ⊢δ Z

↝
X ⊴ ⊢δ Y Y ⊴ ⊢δ Z

tcut
X ⊴ ⊢δ Z

X ≼ Z CP
X ⊴ ⊢δ Z

A ⊴ Γ ⊢δ δX AR
A ⊴ Γ ⊢δ X

X ⊴ ⊢δ Y
X ≼ Y CP

X ⊴ ⊢δ Y
tcut

A ⊴ Γ ⊢δ Y
↝

A ⊴ Γ ⊢δ δX δX ⊴ ⊢δ δY
tcut

A ⊴ Γ ⊢δ δY AR
A ⊴ Γ ⊢δ Y
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Equivalence between BCDδ
≼ and ISδ≼

The equivalence between BCDδ≼ and ISδ≼ requires more assumptions.

We say that (≼, δ) is safe if for all X ,Y such that X ≼ Y , we have

● δX ≤ δY in BCD≼, or
● an IS≼-derivation τX ,Y of δX ⊴ ⊢ δY .

X Y

δX δY

≼

∼ ∼

≤

⊴

We say that δ is η-safe if δX is an intersection of arrow types for all X .

In the following, we assume that (≼, δ) is safe.
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Equivalence between BCDδ
≼ and ISδ≼

Thanks to the safety of (≼, δ), an IS≼-derivation ρ can be mapped into
an ISδ≼-derivation ρ. Consider the (≼) leaves of ρ:

X ≼ Y ≼
X ⊴ ⊢ Y ↦

τX ,Y
δX ⊴ ⊢δ δY AR,AL
X ⊴ ⊢δ Y

X ≼ Y CP
X ⊴ ⊢δ Y

In particular, forall X and Y such that X ≼ Y , there is an ISδ≼-derivation
πX ,Y of X ⊴ ⊢δ Y .

Also, forall A, there is an ISδ≼-derivation of A ⊴ ⊢δ A.
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Equivalence between BCDδ
≼ and ISδ≼

Theorem
If we have A ≤ B in BCDδ≼ then A ⊴ ⊢δ B has an ISδ≼-derivation.

Proof.
By induction on the definition of ≤.

X ≼ Y
X ≤ Y ↦ πX ,Y

A ≤ B B ≤ C
A ≤ C

↦
A ⊴ ⊢δ B B ⊴ ⊢δ C

tcut
A ⊴ ⊢δ C

X ≤ δX ↦
δX ⊴ ⊢δ δX AL
X ⊴ ⊢δ δX

Theorem
If A ⊴ ⊢δ B has an ISδ≼-derivation then we have A ≤ B in BCDδ≼.
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β- and η-conditions

Thanks to the structure of ISδ≼-derivations, the following lemma is easy to
prove.

Lemma (Generalized β-condition for ISδ
≼
)

The following property holds in ISδ≼:

⋂
i∈I

Ai → Bi ⊴ A,Γ ⊢δ B Ô⇒ ∃J ⊆ I , A ⊴ ⊢δ ⋂
j∈J

Aj ∧ ⋂
j∈J

Bj ⊴ Γ ⊢δ B

Hence, BCDδ≼ satisfies the β-condition.

The η-condition is an immediate consequence of the η-safety.
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Comparing with strong β systems

In the literature, one can find the following definition of strong β systems.

Proposition
Strong β systems satisfy the β- and η-conditions.

Proposition
If S is a strong β system, there exists a safe and η-safe pair (≼, δ) such
that S is BCDδ≼.
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Instances

We have already seen:

Name Atoms ≺ δ
BCD A ∅ δX ∶= X
Scott A ∅ δX ∶= Ω→ X
Park A ∅ δX ∶= X → X
CDZ B φ ≺ ψ δφ ∶= ψ → φ δψ ∶= φ→ ψ
HR B φ ≺ ψ δφ ∶= ψ → φ δψ ∶= (φ→ φ) ∩ (ψ → ψ)
DHM B φ ≺ ψ δφ ∶= Ω→ φ δψ ∶= φ→ ψ
TLCA B ∅ δφ ∶= ψ → φ δψ ∶= (ψ → ψ) ∩ (φ→ ψ)

We can also consider:

Atoms ≺ δ
T φ ≺ ψ δφ ∶= Ω→ φ δψ ∶= Ω→ ψ δκ ∶= φ→ ψ
T φ ≺ ψ δφ ∶= κ→ φ δψ ∶= κ→ ψ δκ ∶= κ→ κ
B φ ≺ ψ δφ ∶= (φ→ φ→ φ) ∩ (φ→ φ→ ψ) δψ ∶= φ→ φ→ (φ ∩ψ)
T φ ≺ ψ δφ ∶= (φ→ φ→ κ) ∩ (φ→ ψ → ψ) δψ ∶= φ→ φ→ (κ ∩ψ)

δκ ∶= κ→ κ⋮ ⋮ ⋮

where T = {φ,ψ,κ}.
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Conclusion and future directions

We have used techniques from proof theory to build transitivity-free
presentations of a broad class of intersection subtyping systems with
fixpoint equations. In particular, we generalize the “strong beta
condition” to give a generic proof of the β-condition for subtyping.

Two future directions:

● Investigating induced filter models to understand the expressiveness
of our framework.

● Extending our systems to accomodate more connectives/type
constructors.
Natural candidate: universal quantification (∀) → polymorphic
subtyping.
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Thank you for your listening!
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