
CSE 102 – Tutorial 2 – Recursion &
generators

• Recursion

◦ Subsets and permutations

◦ Anger management and freelancing

• Generators

◦ Basic generators

◦ More subsets and permutations

◦ Sieve of Eratosthenes

Sections tagged with a green marginal line are mandatory.

Sections tagged with an orange marginal line are more advanced, and are therefore considered optional. They

will help you deepen your understanding of the material in the course. You may skip these sections on a first

pass through the tutorial, and come back to them after finishing the mandatory exercises.

Recursion

On February 16, 2022 (14:06:33), we had submissions for the following questions: 1, 2 — Details  (/agns

/CSE102/TD02/2021/uploads/:my/)

Discussion with colleagues in tutorials is encouraged and not considered to be plagiarism. The purpose is to

learn, rather than to be assessed, and discussing with colleagues is a great way to learn. However, you must

still produce and submit your own work and avoid plain copying, as this does not aid learning in any way

and will leave you unprepared for the assessed assignments.

When submitting a solution, the system will do some sanity checks on your files and run some automated

tests on your solutions. A green tick tells you that your file compiles and has passed all of the automated

tests. Passing all the tests provides good evidence that your solutions are correct, although it might not

guarantee it (typically we would need to run infinitely many tests!), and so you should always strive to

understand why your code works and not just rely on the automated tests.

A red tick tells you either that your file is badly broken (e.g., a syntax error) or that your solutions fail one

or more of the automated tests. You can see the result of the tests by clicking on “See my uploads” in the

upper-left menu, and then clicking on the right arrow button next to each file you submitted.

We expect you to write your solution to these problems in a file named recursion.py and to upload it

using the form below. You can resubmit your solution as many times as you like.

Last submission: February 15, 2022 (11:56:35)

Submit on behalf of

Choose SubmitChoose one or more files...

Reuse files from previous submissions 
0.00 / 0

CSE102 / TD02 (2021) https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/

1 of 6 2/16/22, 14:17

https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#recursion
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#recursion
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#subsets-and-permutations
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#subsets-and-permutations
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#anger-management-and-freelancing
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#anger-management-and-freelancing
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#generators
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#generators
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#basic-generators
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#basic-generators
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#more-subsets-and-permutations
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#more-subsets-and-permutations
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#sieve-of-eratosthenes
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/#sieve-of-eratosthenes
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/
https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/uploads/:my/

Subsets and permutations

1. The binomial coefficient counts the number of ways of choosing a -element subset from an

-element set. Write a recursive function binom that given two non-negative integers and , computes

 based on the recurrence relation with boundary conditions and

 for .

Here is a test you can try with the expected output (generating OEIS sequence A000984 (https://oeis.org

/A000984)):

2. Python has built-in set types (https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset),

which allow you to build sets using “curly braces notation” and satisfy equations like {1,3,5} ==

{3,5,1} == {1,1,3,3,5,5} . But sets can also be represented in other ways in Python, just like in other

programming languages. For example, one general way of representing a set is as a list of elements that is

sorted and does not contain duplicates, e.g., [1,3,5] is a valid representation of the set of odd numbers

less than 6, but [3,5,1] is not (since it is unsorted) and neither is [1,1,3,3,5,5] (since it contains

duplicates).

Write a recursive function choose that takes as input a set and a non-negative integer , and returns a

list of all the -element subsets of . For this question, you should not use built-in Python sets, rather

you should assume that the input set is represented as a duplicate-free sorted list and maintain this

invariant for the output, i.e., each of the -element subsets in the output list should be represented as a

duplicate-free sorted list. On the other hand, you are allowed to return the subsets in an arbitrary order.

Hint: The recursive structure of choose should exactly mirror the recursive structure of binom ! You

can start by copying in your code for binom and then modifying the cases appropriately…

For example, choose([1,3,5,7], 3) should return the list of lists

or some rearrangement thereof.

As an additional test, we suggest to compute

and compare it with what it should be. By the way, what should it be?

3. In the lecture, you saw a recursive implementation of the factorial function

Type to search...

Force date



Expected files: recursion.py

()n
k

k

n n k

()n
k

() = () + ()n
k

n−1
k

n−1
k−1 () = 1n

0

() = 0n
k

k > n

>>> print([binom(2*n, n) for n in range(10)])

[1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620]

S k

k S

S

k

[[1, 3, 5], [1, 3, 7], [1, 5, 7], [3, 5, 7]]

>>> [sum(len(choose(list(range(n)),k)) for k in range(n+1)) for n in range(10)]

def factorial(n):

if n == 0:

return 1

return n * factorial(n-1)
0.00 / 0

CSE102 / TD02 (2021) https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/

2 of 6 2/16/22, 14:17

https://oeis.org/A000984
https://oeis.org/A000984
https://oeis.org/A000984
https://oeis.org/A000984
https://oeis.org/A000984
https://oeis.org/A000984
https://oeis.org/A000984
https://oeis.org/A000984
https://oeis.org/A000984
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset
https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

which counts the number of ways () of rearranging a list of distinct elements. Now write a recursive

function permutations that takes as input a list and returns a list of all of the permutations of . You

can assume that all of the values in are distinct, and you can return the different permutations of in

an arbitrary order.

For example, permutations([1,2,3]) should return the list of lists

or some rearrangement thereof.

Hint: If you have computed all permutations of elements, then the permutations of elements can

be obtained by inserting the -st element in all possible positions.

4. Implement choose and permutations without using recursion.

5. A multiset is a set in which elements may appear with some multiplicity. We can represent multisets as

sorted lists of values possibly containing duplicates. For example, the multiset containing two copies of 1,

three of 4, and one of 5 may be represented as [1, 1, 4, 4, 4, 5] . Write a recursive function

multichoose that takes as input a multiset represented as a sorted list of values and a non-negative

integer and returns the list of all its -element submultisets.

For example, multichoose([1, 1, 4, 4, 4, 5], 2) should return the list of lists

or some rearrangement thereof.

Anger management and freelancing

6. Every day, Olivier joins the Zoom session at his office late or on time, but his boss Emmanuel becomes

angry if Olivier joins late two days in a row. Help Olivier by writing a recursive function not_angry that

takes a non-negative integer as input and computes in how many ways Olivier can join the meetings

over days so that Emmanuel will not get angry. For example, not_angry(3) = 5 and not_angry(4)

= 8 .

Hint: To compute not_angry(n) , analyze the possibilities after what happens on the first day (Olivier

either joins late or is on time).

7. Emmanuel has become more relaxed, and now can tolerate Olivier joining late up to days in a row, for

some . Write a recursive function not_so_angry(k, n) to compute the number of ways of keeping

Emmanuel calm during days. For example, not_so_angry(3, 4) = 15 .

Hint: To compute not_so_angry(k, n) , analyze the possibilities for the initial days of the -day

sequence, considering for how many days in a row Olivier may join late.

8. Finally Olivier showed up late one too many times in a row and was fired. He decided to join a startup

whose business model is based on matching freelancers with tasks to be done, and again he is asking you

for help.

You are given an array array prices , where prices[i][j] is the amount of money the i-th

freelancer wants for the j-th task. You need to assign each freelancer a task so that the total amount of

money spent is as small as possible. Write a function find_assignment that takes the prices array as an

input and returns a pair (price, assign) such that assign[i] is the number of the task assigned to

the i-th freelancer in an optimal assignment, and price is the smallest amount of money to pay.

Here are some tests:

n! n

L L

L L

[[3, 2, 1], [2, 3, 1], [2, 1, 3], [3, 1, 2], [1, 3, 2], [1, 2, 3]]

n n + 1
n + 1

S

k k

[[1, 1], [1, 4], [1, 5], [4, 4], [4, 5]]

n

n

k

k > 0
n

n

n × n

0.00 / 0

CSE102 / TD02 (2021) https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/

3 of 6 2/16/22, 14:17

We (and Olivier) expect you to implement a recursive solution that will decrease the number of

freelancers by one each time. If you are curious about more efficient ways to solve this problem, you

might want to take a look at the very elegant Hungarian algorithm (https://en.wikipedia.org

/wiki/Hungarian_algorithm).

Generators

Basic generators

9. Write a function fibs() that produces a generator for the Fibonacci sequence defined by:

Make sure that the number of operations between successive yields is constant, i.e., each individual item

of the sequence is yielded in constant time.

You can test that the generator produces correct values for the first ten numbers in the sequence by

running the following code:

10. Write a function prefix_sums(k) that produces a generator for the infinite sequence of sums ,

, , etc. That is, the th element of the sequence is:

>>> find_assignment([[1, 4], [5, 9]])

(9, [1, 0])

>>> find_assignment([[1, 1], [1, 2]])

(2, [1, 0])

We expect you to write your solution to these problems in a file named generators.py and to upload it

using the form below. You can resubmit your solution as many times as you like.

Last submission: February 15, 2022 (11:34:07)

Submit on behalf of

Type to search...

Force date

Choose SubmitChoose one or more files...

Reuse files from previous submissions 



Expected files: generators.py

, , …F0 F1

F0 = 0 F1 = 1 Fn+2 = + for n ∈ N.Fn Fn+1

>>> g = fibs()

>>> [next(g) for _ in range(10)]

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

k

k + (k + 1) k + (k + 1) + (k + 2) n

= (k + i).Pn ∑
i=0

n

>>> g = prefix_sums(10)

>>> [next(g) for _ in range(10)]

 [10, 21, 33, 46, 60, 75, 91, 108, 126, 145]0.00 / 0

CSE102 / TD02 (2021) https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/

4 of 6 2/16/22, 14:17

https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm
https://en.wikipedia.org/wiki/Hungarian_algorithm

11. Write a function interleave(g1, g2) that produces a generator that yields values alternately from the

generators g1 and g2 . You may assume that both g1 and g2 yield values forever, i.e., that they

generate infinite sequences.

More subsets and permutations

12. Write a function choose_gen(S, k) that produces a generator that yields all the -element subsets of a

set (represented as a sorted list of values without duplicates) in some arbitrary order. For small sets,

you can test the result against the choose function you wrote above. However, the generator should

produce the subsets one-by-one and not store all of them simultaneously. For example, you should be

able to use choose_gen(list(range(100)), 50) to generate 50-element subsets of a 100-element set,

without having to store all the possibilities.

13. Write a function subsets_gen(S) that produces a generator that yields all subsets of , in increasing

order of size.

14. The same thing but for permutations, i.e., write a function permutations_gen that given as input a list

 of distinct values, returns a generator yielding all permutations of . Test your generator on small lists

against the permutations function you implemented above, and also test it on larger lists. Again, you

should be able to easily generate permutations of a list of length 100, without having to store all

 possibilities.

Sieve of Eratosthenes

We are here interested in the sieve of Eratosthenes (https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)

algorithm for enumerating primes. The following series of problems will guide you towards implementing the

sieve using generators.

15. Write a generator repeat(x) which repeatedly yields the value x .

16. Write a function cross(n, g) which crosses out every -th element of the sequence generated by g

and replaces it with the value False .

17. Write a generator sieve() generating an infinite stream of booleans , such that is

>>> g = interleave(prefix_sums(10), fibs())

>>> [next(g) for _ in range(10)]

[10, 0, 21, 1, 33, 1, 46, 2, 60, 3]

k

S

() ≈100
50 1029

>>> [s for s in choose_gen([1,3,5,7], 3)]

[[1, 3, 5], [1, 3, 7], [1, 5, 7], [3, 5, 7]]

>>> g = choose_gen(list(range(100)), 50)

>>> xs = [next(g) for _ in range(1000)]

>>> next(g)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 73, 99]

S

>>> [s for s in subsets_gen([1,2,3])]

[[], [1], [2], [3], [1, 2], [1, 3], [2, 3], [1, 2, 3]]

>>> g = subsets_gen(list(range(100)))

>>> xs = [next(g) for _ in range(1000)]

>>> next(g)

[9, 54]

L L

100! ≈ 10158

n

>>> g = cross(2, repeat(True))

>>> [next(g) for _ in range(10)]

[True, False, True, False, True, False, True, False, True, False]

, , , …S0 S1 S2 Sn
0.00 / 0

CSE102 / TD02 (2021) https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/

5 of 6 2/16/22, 14:17

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

True iff is prime. You should use the sieve of Eratosthenes algorithm, making repeated calls to cross

to cross out the multiples of prime numbers.

18. Write a function prime_pi(n) which uses your generator above to compute , i.e., the number of

primes . You can test that your implementation is correct by comparing the values to OEIS sequence

A000720 (https://oeis.org/A000720/b000720.txt). How high can you go? In terms of efficiency, how

does this version of compare to the versions you implemented for CSE-103, and why might that be

the case?

n

>>> g = sieve()

>>> [next(g) for _ in range(10)]

[False, False, True, True, False, True, False, True, False, False]

π(n)
≤ n

π(n)

0.00 / 0

CSE102 / TD02 (2021) https://grader.dix.polytechnique.fr/agns/CSE102/TD02/2021/

6 of 6 2/16/22, 14:17

https://oeis.org/A000720/b000720.txt
https://oeis.org/A000720/b000720.txt
https://oeis.org/A000720/b000720.txt
https://oeis.org/A000720/b000720.txt
https://oeis.org/A000720/b000720.txt
https://oeis.org/A000720/b000720.txt

