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But there is no sharing in the A-calculus.

The simplest way to introduce sharing in the A-calculus is subterm
sharing.

t,us=x | tu| Ax.t| t[x<u] (explicit substitution)

In a call-by-value setting, general applications tu become somewhat
redundant.
< It is possible to restrict the shape of applications.
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Some more ways to classify/design call-by-value calculi with ESs.
® Nested or flattened ESs: t[x<u[y<r]] vs. t[x<u][y<r]

® Small-step vs. micro-step substitutions:

(xx)[x<I] =1l
vs.

() [x1] = (Ix)[x<1] = (IN[x<I] = 1l

® Variables as values?
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Usefulness: subtleties

® Contextual closure:
x[x«I1] = I[x«<I] is non-useful
while x[x«I]y — I[x«I]y is useful

® |ndirect usefulness:

(xy)[xz][z<1] > (xy) [xI][z1] = (Iy) [x<1][z<I]
< It is (indirectly) useful!

® Renaming chains:

(xot) [xoex1 | [x1ex ] [xk1xi ] [xi]
> (xot)[xoex1][xaexa] [ xk—1 ][ xx ]

*

=" (xot) o] Pxac ] [ [xe!]
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Focusing

Focusing is a technique first introduced by Andreoli to reduce
non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Rule invertible | non-invertible
Phase negative positive
Connective | negative positive
Focusing gives to proofs.

< focused proofs can be seen as a (light) canonical form of proofs.
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In a previous work with Dale Miller, we use the focused proof system
LJFS to design term structures.

Formulas are polarized:
® Implications are negative

® Atomic formulas are either negative or postive

We consider the two uniform polarizations 6~ and 6*:

® §~ yields the usual tree-like syntax. No sharing within a term.
< negative/usual A-terms

® 0% yields a syntax allowing some specific forms of sharing within a
term.
< positive \-terms
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Explicit positive A-calculus Aypos
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® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
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not exist!

Example of reduction:
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Key fact: Apos (O Aspos) is directly useful by definition!
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t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu
® Variables are values and ES for variable: renaming chains do exist...

There are two rules in Aysc:
® The m-rule fires a B-redex and creates an ES

(Ax.t)u - t[xu]

® The e-rule fires an ES (of values) and makes a substitution

Cx)[xev] = C{v)[xev]

Known result: the number of m-steps is a reasonable cost model.
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In order to relate Aysc to Aspos, We define a core calculus of Aysc which is
essentially equivalent to Aysc and captures direct usefulness.

Step 1: Separate e-rules for variables (=, ) and abstractions (—e,,,).

var

Step 2: Distinguish (directly) useful e-steps (—,) from non useful
e-steps (—,,) for abstractions.

= -=>n + =

+ e,

€var

Non-useful reduction = —¢_,
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Conclusion and Future work

® We show that the of Apos allows one to capture the
essence of usefulness. What is remarkable is that A\yos is an outcome
of a study of term representation inspired by focusing.

® Future work:

1. efficient implementation of meta-level renamings involved in Apos.
We expect this to be doable in an efficient way via an appropriate
abstract machine.

2. Apos for call-by-need evaluation
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Thank you for your attention!

19/19



