Positive Focusing is Directly Useful

Jui-Hsuan Wu (Ray) and Beniamino Accattoli

LIX, Ecole Polytechnique & Inria Saclay

MFPS 2024
University of Oxford, UK

21 June 2024

1/19

Background

Sharing is important.

2/19

Background

Sharing is important.

But there is no sharing in the A-calculus.

tyus= x| tu| Ax.t

2/19

Background

Sharing is important.
But there is no sharing in the A-calculus.

The simplest way to introduce sharing in the A-calculus is subterm
sharing.

t,us=x|tu|dx.t|let x = vint

2/19

Background

Sharing is important.
But there is no sharing in the A-calculus.

The simplest way to introduce sharing in the A-calculus is subterm
sharing.

t,us=x | tu| Ax.t| t[x<u] (explicit substitution)

2/19

Background

Sharing is important.
But there is no sharing in the A-calculus.

The simplest way to introduce sharing in the A-calculus is subterm
sharing.

t,us=x | tu| Ax.t| t[x<u] (explicit substitution)

In a call-by-value setting, general applications tu become somewhat
redundant.
< It is possible to restrict the shape of applications.

2/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

tu

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

5 (x[uD) [x<[t]]

tu

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu—'>(t)x)[x| ul]

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

value as the left subterm
of an application

5 (x[uD) [x<[t]]

tu —— > ([t]x)[x<[u]] value as the right subterm -

[- () Ix=[tl Ly [ul]

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

[(xy)[x<[t]][y<[u]] values as both subterms ---

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

[(xy)[x<[t]][y<[u]] values as both subterms ---

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

[(xy)[x<[t]][y<[u]] values as both subterms ---

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

Xy

substituting zw for x

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

[(xy)[x<[t]][y<[u]] values as both subterms ---

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy (zw)y

substituting zw for x

3/19

Shape of applications in a CbV setting

In CbV, there are many possible ways to restrict the shape of applications:

. value as the left subterm
[[(D) Dxe]] of an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

[(xy)[x<[t]][y<[u]] values as both subterms ---

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

Xy X (zw)y

substituting zw for x

3/19

Classification /design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

4/19

Classification /design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:
® the general form tu

® eight forms vu, xu, tv', w', xv', ty, vy, and xy.

4/19

Classification /design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:

® the general form tu

® eight forms vu, xu, tv', w', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

4/19

Classification /design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:
® the general form tu
® eight forms vu, xu, tv', w', xv', ty, vy, and xy.
Some more ways to classify/design call-by-value calculi with ESs.
® Nested or flattened ESs: t[x<u[y<r]] vs. t[x<u][y<r]

4/19

Classification /design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications
Now we have nine different forms of applications:

® the general form tu

® eight forms vu, xu, tv/, w', xv', ty, vy, and xy.
Some more ways to classify/design call-by-value calculi with ESs.
® Nested or flattened ESs: t[x<u[y<r]] vs. t[x<u][y<r]

® Small-step vs. micro-step substitutions:

(xx)[x<I] =1l
vs.

() [x1] = (Ix)[x<1] = (IN[x<I] = 1l

4/19

Classification /design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications
Now we have nine different forms of applications:

® the general form tu

® eight forms vu, xu, tv/, w', xv', ty, vy, and xy.
Some more ways to classify/design call-by-value calculi with ESs.
® Nested or flattened ESs: t[x<u[y<r]] vs. t[x<u][y<r]

® Small-step vs. micro-step substitutions:

(xx)[x<I] =1l
vs.

() [x1] = (Ix)[x<1] = (IN[x<I] = 1l

® Variables as values?

4/19

Useful

5/19

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

Cx)[xev] = C{v)[xev]

6/19

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C{x)[xev] = C(v)[xv]

What about making a substitution only when it
of some [-redexes?

6/19

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C{x)[xev] = C(v)[xv]
What about making a substitution only when it

of some [-redexes?

Consider
() [x1] = (yD) [x<1]

6/19

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C{x)[xev] = C(v)[xv]

What about making a substitution only when it
of some [-redexes?
Consider
() [x1] = (YD) [x<]

There is no -redex created after this substitution, and there won't be
any [-redex created in the future — non-useful

6/19

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C(x)[xev] > C(v)[xv]
What about making a substitution only when it
of some [-redexes?
Consider
() [x<l] = (YD [x<]

There is no -redex created after this substitution, and there won't be
any [-redex created in the future — non-useful

Some more examples:

* (xy)xl] = ()[x<1]is
® x[x<I] = I[x<I] is non-useful

6/19

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C(x)[xev] > C(v)[xv]
What about making a substitution only when it
of some [-redexes?
Consider
() [x<l] = (YD [x<]

There is no -redex created after this substitution, and there won't be
any [-redex created in the future — non-useful

Some more examples:

* (xy)xl] = ()[x<1]is
® x[x<I] = I[x<I] is non-useful

6/19

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C(x)[xev] > C(v)[xv]
What about making a substitution only when it
of some [-redexes?
Consider
() [x<l] = (YD [x<]

There is no -redex created after this substitution, and there won't be
any [-redex created in the future — non-useful

Some more examples:

* (xy)xl] = ()[x<1]is
® x[x<I] = I[x<I] is non-useful

* (o)xel]

6/19

Usefulness: subtleties

7/19

Usefulness: subtleties

e Contextual closure:

7/19

Usefulness: subtleties

e Contextual closure:
x[x«I1] = I[x«<I] is non-useful

7/19

Usefulness: subtleties

® Contextual closure:
x[x«I1] = I[x«<I] is non-useful
while x[x<I]y = I[x<I]y is useful

7/19

Usefulness: subtleties

® Contextual closure:
x[x«I1] = I[x«<I] is non-useful
while x[x«I]y — I[x«I]y is useful

7/19

Usefulness: subtleties

® Contextual closure:
x[x«I1] = I[x«<I] is non-useful
while x[x«I]y — I[x«I]y is useful

® Indirect usefulness:
(xy)[x<z][z<1] = (xy)[x<1][z<]] is useful or not?

7/19

Usefulness: subtleties

® Contextual closure:
x[x«I1] = I[x«<I] is non-useful
while x[x«I]y — I[x«I]y is useful

® |ndirect usefulness:
() [xez][z1] = (xy) [xl][ze1] = (ly) [x<1][z<]]
— |t is useful!

7/19

Usefulness: subtleties

® Contextual closure:
x[x«I1] = I[x«<I] is non-useful
while x[x«I]y — I[x«I]y is useful

® |ndirect usefulness:
() [xez][z1] = (xy) [xl][ze1] = (ly) [x<1][z<]]
< It is (indirectly) useful!

7/19

Usefulness: subtleties

® Contextual closure:
x[x«I1] = I[x«<I] is non-useful
while x[x«I]y — I[x«I]y is useful

® |ndirect usefulness:

(xy)[xz][z<1] > (xy) [xI][z1] = (Iy) [x<1][z<I]
< It is (indirectly) useful!

® Renaming chains:

(xot) [xoex1 | [x1ex] [xk1xi] [xi]
> (xot)[xoex1][xaexa] [xk—1][xx]

*

=" (xot) o] Pxac] [[xe!]

7/19

Focusing

8/19

Focusing

Focusing is a technique first introduced by Andreoli to reduce
non-determinism in logic programming (or proof search) in linear logic.

9/19

Focusing

Focusing is a technique first introduced by Andreoli to reduce
non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Rule invertible | non-invertible
Phase negative positive
Connective | negative positive

9/19

Focusing

Focusing is a technique first introduced by Andreoli to reduce
non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Rule invertible | non-invertible
Phase negative positive
Connective | negative positive
Focusing gives to proofs.

< focused proofs can be seen as a (light) canonical form of proofs.

9/19

Negative/positive A-terms

In a previous work with Dale Miller, we use the focused proof system
LJFS to design term structures.

10/19

Negative/positive A-terms

In a previous work with Dale Miller, we use the focused proof system
LJFS to design term structures.

Formulas are polarized:
® Implications are negative

® Atomic formulas are either negative or postive

10/19

Negative/positive A-terms

In a previous work with Dale Miller, we use the focused proof system
LJFS to design term structures.

Formulas are polarized:
® Implications are negative

® Atomic formulas are either negative or postive

We consider the two uniform polarizations 6~ and 6*:

10/19

Negative/positive A-terms

In a previous work with Dale Miller, we use the focused proof system
LJFS to design term structures.

Formulas are polarized:
® Implications are negative

® Atomic formulas are either negative or postive

We consider the two uniform polarizations 6~ and 6*:

® §~ yields the usual tree-like syntax. No sharing within a term.
< negative/usual A-terms

10/19

Negative/positive A-terms

In a previous work with Dale Miller, we use the focused proof system
LJFS to design term structures.

Formulas are polarized:
® Implications are negative

® Atomic formulas are either negative or postive

We consider the two uniform polarizations 6~ and 6*:

® §~ yields the usual tree-like syntax. No sharing within a term.
< negative/usual A-terms

® 0% yields a syntax allowing some specific forms of sharing within a
term.
< positive \-terms

10/19

Positive

11/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

12/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.

12/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

12/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

Example of reduction:

x[xeyylly<zz'][z Aw.w' [w «ww]]

12/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

Example of reduction:

xIxeyylly-z2 [z hw.w'[w'ww]]

12/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

Example of reduction:

x[xyylly<zz' [z Aw.w/ [w «ww]]
—oe, X[xeyy]ly(Oww'[weww])Z'[[zeAw.w' [w «ww]]

12/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

Example of reduction:

x[xeyylly<zz'][z Aw.w' [w «ww]]
—oe, X[xeyy]ly(Oww' [w' —ww])z'[zeAw.w' [w «ww]]

—om, X[xewiw]|[w]<z'Z'|[[zeAw.w![w —ww]]

12/19

Positive A-calculus Ayos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

Example of reduction:

x[xeyylly<zZ' [z Aw.w' [w —ww]]

—oem, X[xewiw]][wj<Z'Z |[zAww [w —ww]]

12/19

Explicit positive A-calculus Aypos

t,u == x| t[xeyz] | t{x<Ay.u] | t[x—(Ay.u)z]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

Example of reduction:

x[xeyylly<zz'][z Aw.w' [w «ww]]
—oe, X[xeyy]ly(Oww'[weww])Z'[[zeAw.w' [w «ww]]

—om, X[xewiw|[wj<Z'Z'|[zAw.w'[w —ww]]

12/19

Explicit positive A-calculus Aypos

t,u == x| t[xeyz] | t{x<Ay.u] | t[x—(Ay.u)z]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do
not exist!

Example of reduction:

x[xeyylly<zz'][z Aw.w' [w «ww]]
—oe, X[xeyy]ly(Oww'[weww])Z'[[zeAw.w' [w «ww]]

—om, X[xewiw|[wj<Z'Z'|[zAw.w'[w —ww]]

Key fact: Apos (O Aspos) is directly useful by definition!

12/19

Value substitution calculus Aysc

t,u == v |tu|t[x<u]
v o= x| Ax.t

13/19

Value substitution calculus Aysc

t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu

13/19

Value substitution calculus Aysc

t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu
® Variables are values and ES for variable: renaming chains do exist...

13/19

Value substitution calculus Aysc

t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu
® Variables are values and ES for variable: renaming chains do exist...

There are two rules in Aysc:
® The m-rule fires a B-redex and creates an ES

13/19

Value substitution calculus Aysc

t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu
® Variables are values and ES for variable: renaming chains do exist...

There are two rules in Aysc:
® The m-rule fires a B-redex and creates an ES

(Ax.t)u - t[xu]

13/19

Value substitution calculus Aysc

t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu
® Variables are values and ES for variable: renaming chains do exist...

There are two rules in Aysc:
® The m-rule fires a B-redex and creates an ES

(Ax.t)u - t[xu]

® The e-rule fires an ES (of values) and makes a substitution

13/19

Value substitution calculus Aysc

t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu
® Variables are values and ES for variable: renaming chains do exist...

There are two rules in Aysc:
® The m-rule fires a B-redex and creates an ES

(Ax.t)u - t[xu]

® The e-rule fires an ES (of values) and makes a substitution

Cx)[xev] = C{v)[xev]

13/19

Value substitution calculus Aysc

t,bu = v|tu|t[x-u]
v o= x| Ax.t

® General applications tu
® Variables are values and ES for variable: renaming chains do exist...

There are two rules in Aysc:
® The m-rule fires a B-redex and creates an ES

(Ax.t)u - t[xu]

® The e-rule fires an ES (of values) and makes a substitution

Cx)[xev] = C{v)[xev]

Known result: the number of m-steps is a reasonable cost model.

13/19

Directly Useful

14/19

Dissecting Aysc

Axpos 1S directly useful while Aysc is not.

15/19

Dissecting Aysc

Axpos 1S directly useful while Aysc is not.

In order to relate Aysc to Aspos, We define a core calculus of Aysc which is
essentially equivalent to Aysc and captures direct usefulness.

15/19

Dissecting Aysc

Axpos 1S directly useful while Aysc is not.

In order to relate Aysc to Aspos, We define a core calculus of Aysc which is
essentially equivalent to Aysc and captures direct usefulness.

Step 1: Separate e-rules for variables (=,) and abstractions (—e,,,).

15/19

Dissecting Aysc

Axpos 1S directly useful while Aysc is not.

In order to relate Aysc to Aspos, We define a core calculus of Aysc which is
essentially equivalent to Aysc and captures direct usefulness.
Step 1: Separate e-rules for variables (=,) and abstractions (=)

var

Step 2: Distinguish (directly) useful e-steps (—,) from non useful
e-steps (—,,) for abstractions.

15/19

Dissecting Aysc

Axpos 1S directly useful while Aysc is not.

In order to relate Aysc to Aspos, We define a core calculus of Aysc which is
essentially equivalent to Aysc and captures direct usefulness.

Step 1: Separate e-rules for variables (=,) and abstractions (—e,,,).

var

Step 2: Distinguish (directly) useful e-steps (—,) from non useful
e-steps (—,,) for abstractions.

= -=>n + =

+ e,

€var

15/19

Dissecting Aysc

Axpos 1S directly useful while Aysc is not.

In order to relate Aysc to Aspos, We define a core calculus of Aysc which is
essentially equivalent to Aysc and captures direct usefulness.

Step 1: Separate e-rules for variables (=,) and abstractions (—e,,,).

var

Step 2: Distinguish (directly) useful e-steps (—,) from non useful
e-steps (—,,) for abstractions.

= -=>n + =

+ e,

€var

Non-useful reduction = —¢_,

15/19

Positive Focusing is Directly Useful

16/19

Big picture

)\OVSC (: Core)\ovsc + NOn—useful)

17/19

Big picture

Aovsc (= Core A\oysc + Non-useful)

17/19

Big picture

)\OVSC (: Core /\ovsc + NOn—useful)

17/19

Big picture

Aovsc (= Core A\oysc + Non-useful)

Core Agysc Non-useful
t *t! u

17/19

Big picture

Termination)\ovsc (= Core Agysc + Non-useful)
Equivalence ... My
Core Agysc Non-useful

t ! “u

17/19

Big picture

Termination Aovsc (= + Non-useful)
Equivalence ... My
Non-useful
t * t, U

preserves the
number of m-steps

~

1]]

)\oxpos

17/19

Big picture

Termination Aovsc (= + Non-useful)
Equivalence ... My
Non-useful
t * tl U

1]]

)\oxpos

17/19

Conclusion and Future work

18/19

Conclusion and Future work

® We show that the of Apos allows one to capture the
essence of usefulness. What is remarkable is that Ao is an outcome
of a study of term representation inspired by focusing.

18/19

Conclusion and Future work

® We show that the of Apos allows one to capture the
essence of usefulness. What is remarkable is that A\yos is an outcome
of a study of term representation inspired by focusing.

® Future work:

1. efficient implementation of meta-level renamings involved in Apos.
We expect this to be doable in an efficient way via an appropriate
abstract machine.

2. Apos for call-by-need evaluation

18/19

Thank you for your attention!

19/19

