
Positive Focusing is Directly Useful

Jui-Hsuan Wu (Ray) and Beniamino Accattoli

LIX, Ecole Polytechnique & Inria Saclay

MFPS 2024
University of Oxford, UK

21 June 2024

1 / 19



Background

Sharing is important.

But there is no sharing in the λ-calculus.

The simplest way to introduce sharing in the λ-calculus is subterm
sharing.

t,u ∶∶= x ∣ tu ∣ λx .t

In a call-by-value setting, general applications tu become somewhat
redundant.
↪ It is possible to restrict the shape of applications.

2 / 19



Background

Sharing is important.

But there is no sharing in the λ-calculus.

The simplest way to introduce sharing in the λ-calculus is subterm
sharing.

t,u ∶∶= x ∣ tu ∣ λx .t

In a call-by-value setting, general applications tu become somewhat
redundant.
↪ It is possible to restrict the shape of applications.

2 / 19



Background

Sharing is important.

But there is no sharing in the λ-calculus.

The simplest way to introduce sharing in the λ-calculus is subterm
sharing.

t,u ∶∶= x ∣ tu ∣ λx .t ∣ let x = u in t

In a call-by-value setting, general applications tu become somewhat
redundant.
↪ It is possible to restrict the shape of applications.

2 / 19



Background

Sharing is important.

But there is no sharing in the λ-calculus.

The simplest way to introduce sharing in the λ-calculus is subterm
sharing.

t,u ∶∶= x ∣ tu ∣ λx .t ∣ t[x�u] (explicit substitution)

In a call-by-value setting, general applications tu become somewhat
redundant.
↪ It is possible to restrict the shape of applications.

2 / 19



Background

Sharing is important.

But there is no sharing in the λ-calculus.

The simplest way to introduce sharing in the λ-calculus is subterm
sharing.

t,u ∶∶= x ∣ tu ∣ λx .t ∣ t[x�u] (explicit substitution)

In a call-by-value setting, general applications tu become somewhat
redundant.
↪ It is possible to restrict the shape of applications.

2 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Shape of applications in a CbV setting
In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm
of an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX

3 / 19



Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:

● the general form tu

● eight crumbled forms vu, xu, tv ′, vv ′, xv ′, ty , vy , and xy .

Some more ways to classify/design call-by-value calculi with ESs.

● Nested or flattened ESs: t[x�u[y�r]] vs. t[x�u][y�r]

● Small-step vs. micro-step substitutions:

(xx)[x�I] → II
vs.

(xx)[x�I] → (Ix)[x�I] → (II)[x�I] → II

● Variables as values?

4 / 19



Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:

● the general form tu

● eight crumbled forms vu, xu, tv ′, vv ′, xv ′, ty , vy , and xy .

Some more ways to classify/design call-by-value calculi with ESs.

● Nested or flattened ESs: t[x�u[y�r]] vs. t[x�u][y�r]

● Small-step vs. micro-step substitutions:

(xx)[x�I] → II
vs.

(xx)[x�I] → (Ix)[x�I] → (II)[x�I] → II

● Variables as values?

4 / 19



Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:

● the general form tu

● eight crumbled forms vu, xu, tv ′, vv ′, xv ′, ty , vy , and xy .

Some more ways to classify/design call-by-value calculi with ESs.

● Nested or flattened ESs: t[x�u[y�r]] vs. t[x�u][y�r]

● Small-step vs. micro-step substitutions:

(xx)[x�I] → II
vs.

(xx)[x�I] → (Ix)[x�I] → (II)[x�I] → II

● Variables as values?

4 / 19



Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:

● the general form tu

● eight crumbled forms vu, xu, tv ′, vv ′, xv ′, ty , vy , and xy .

Some more ways to classify/design call-by-value calculi with ESs.

● Nested or flattened ESs: t[x�u[y�r]] vs. t[x�u][y�r]

● Small-step vs. micro-step substitutions:

(xx)[x�I] → II
vs.

(xx)[x�I] → (Ix)[x�I] → (II)[x�I] → II

● Variables as values?

4 / 19



Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:

● the general form tu

● eight crumbled forms vu, xu, tv ′, vv ′, xv ′, ty , vy , and xy .

Some more ways to classify/design call-by-value calculi with ESs.

● Nested or flattened ESs: t[x�u[y�r]] vs. t[x�u][y�r]

● Small-step vs. micro-step substitutions:

(xx)[x�I] → II
vs.

(xx)[x�I] → (Ix)[x�I] → (II)[x�I] → II

● Variables as values?

4 / 19



Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications

Now we have nine different forms of applications:

● the general form tu

● eight crumbled forms vu, xu, tv ′, vv ′, xv ′, ty , vy , and xy .

Some more ways to classify/design call-by-value calculi with ESs.

● Nested or flattened ESs: t[x�u[y�r]] vs. t[x�u][y�r]

● Small-step vs. micro-step substitutions:

(xx)[x�I] → II
vs.

(xx)[x�I] → (Ix)[x�I] → (II)[x�I] → II

● Variables as values?

4 / 19



Positive Focusing is Directly Useful

5 / 19



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

What about making a substitution only when it contributes to the
creation of some β-redexes?

Consider
(yx)[x�I] → (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be
any β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I] → (Iy)[x�I] is useful

● x[x�I] → I[x�I] is non-useful

● (xx)[x�I]

6 / 19



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

What about making a substitution only when it contributes to the
creation of some β-redexes?

Consider
(yx)[x�I] → (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be
any β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I] → (Iy)[x�I] is useful

● x[x�I] → I[x�I] is non-useful

● (xx)[x�I]

6 / 19



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

What about making a substitution only when it contributes to the
creation of some β-redexes?

Consider
(yx)[x�I] → (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be
any β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I] → (Iy)[x�I] is useful

● x[x�I] → I[x�I] is non-useful

● (xx)[x�I]

6 / 19



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

What about making a substitution only when it contributes to the
creation of some β-redexes?

Consider
(yx)[x�I] → (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be
any β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I] → (Iy)[x�I] is useful

● x[x�I] → I[x�I] is non-useful

● (xx)[x�I]

6 / 19



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

What about making a substitution only when it contributes to the
creation of some β-redexes?

Consider
(yx)[x�I] → (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be
any β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I] → (Iy)[x�I] is useful

● x[x�I] → I[x�I] is non-useful

● (xx)[x�I]

6 / 19



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

What about making a substitution only when it contributes to the
creation of some β-redexes?

Consider
(yx)[x�I] → (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be
any β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I] → (Iy)[x�I] is (directly) useful

● x[x�I] → I[x�I] is non-useful

● (xx)[x�I]

6 / 19



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

What about making a substitution only when it contributes to the
creation of some β-redexes?

Consider
(yx)[x�I] → (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be
any β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I] → (Iy)[x�I] is (directly) useful

● x[x�I] → I[x�I] is non-useful

● (xx)[x�I]

6 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I]
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I]
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I]
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I]
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I]
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I] is useful or not?
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I] → (Iy)[x�I][z�I]
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I] → (Iy)[x�I][z�I]
↪ It is (indirectly) useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Usefulness: subtleties

● Contextual closure:
x[x�I] → I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I] → (xy)[x�I][z�I] → (Iy)[x�I][z�I]
↪ It is (indirectly) useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

7 / 19



Positive Focusing is Directly Useful

8 / 19



Focusing

Focusing is a technique first introduced by Andreoli to reduce
non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Rule invertible non-invertible
Phase negative positive

Connective negative positive

Focusing gives more structure to proofs.
↪ focused proofs can be seen as a (light) canonical form of proofs.

9 / 19



Focusing

Focusing is a technique first introduced by Andreoli to reduce
non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Rule invertible non-invertible
Phase negative positive

Connective negative positive

Focusing gives more structure to proofs.
↪ focused proofs can be seen as a (light) canonical form of proofs.

9 / 19



Focusing

Focusing is a technique first introduced by Andreoli to reduce
non-determinism in logic programming (or proof search) in linear logic.

It comes from a simple observation:

Rule invertible non-invertible
Phase negative positive

Connective negative positive

Focusing gives more structure to proofs.
↪ focused proofs can be seen as a (light) canonical form of proofs.

9 / 19



Negative/positive λ-terms

In a previous work with Dale Miller, we use the focused proof system
LJF⊃ to design term structures.

Formulas are polarized:

● Implications are negative

● Atomic formulas are either negative or postive

We consider the two uniform polarizations δ− and δ+:

● δ− yields the usual tree-like syntax. No sharing within a term.
↪ negative/usual λ-terms

● δ+ yields a syntax allowing some specific forms of sharing within a
term.
↪ positive λ-terms

10 / 19



Negative/positive λ-terms

In a previous work with Dale Miller, we use the focused proof system
LJF⊃ to design term structures.

Formulas are polarized:

● Implications are negative

● Atomic formulas are either negative or postive

We consider the two uniform polarizations δ− and δ+:

● δ− yields the usual tree-like syntax. No sharing within a term.
↪ negative/usual λ-terms

● δ+ yields a syntax allowing some specific forms of sharing within a
term.
↪ positive λ-terms

10 / 19



Negative/positive λ-terms

In a previous work with Dale Miller, we use the focused proof system
LJF⊃ to design term structures.

Formulas are polarized:

● Implications are negative

● Atomic formulas are either negative or postive

We consider the two uniform polarizations δ− and δ+:

● δ− yields the usual tree-like syntax. No sharing within a term.
↪ negative/usual λ-terms

● δ+ yields a syntax allowing some specific forms of sharing within a
term.
↪ positive λ-terms

10 / 19



Negative/positive λ-terms

In a previous work with Dale Miller, we use the focused proof system
LJF⊃ to design term structures.

Formulas are polarized:

● Implications are negative

● Atomic formulas are either negative or postive

We consider the two uniform polarizations δ− and δ+:

● δ− yields the usual tree-like syntax. No sharing within a term.
↪ negative/usual λ-terms

● δ+ yields a syntax allowing some specific forms of sharing within a
term.
↪ positive λ-terms

10 / 19



Negative/positive λ-terms

In a previous work with Dale Miller, we use the focused proof system
LJF⊃ to design term structures.

Formulas are polarized:

● Implications are negative

● Atomic formulas are either negative or postive

We consider the two uniform polarizations δ− and δ+:

● δ− yields the usual tree-like syntax. No sharing within a term.
↪ negative/usual λ-terms

● δ+ yields a syntax allowing some specific forms of sharing within a
term.
↪ positive λ-terms

10 / 19



Positive Focusing is Directly Useful

11 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]

x[x�w ′1w
′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]

x[x�w ′1w
′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]

x[x�w ′1w
′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]
→om+ x[x�w ′1w

′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]
→om+ x[x�w ′1w

′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]
→om+ x[x�w ′1w

′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]
→om+ x[x�w ′1w

′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]
→oem+ x[x�w ′1w

′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Explicit positive λ-calculus λxpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u] ∣ t[x�(λy .u)z]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]
→om+ x[x�w ′1w

′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Explicit positive λ-calculus λxpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u] ∣ t[x�(λy .u)z]

● ESs are flattened.

● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do

not exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]
→om+ x[x�w ′1w

′

1][w
′

1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (or λxpos) is directly useful by definition!

12 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Value substitution calculus λvsc

t,u ∶∶= v ∣ tu ∣ t[x�u]
v ∶∶= x ∣ λx .t

● General applications tu

● Variables are values and ES for variable: renaming chains do exist...

There are two rules in λvsc:

● The m-rule fires a β-redex and creates an ES

(λx .t)u → t[x�u]

● The e-rule fires an ES (of values) and makes a substitution

C ⟨x⟩[x�v] → C ⟨v⟩[x�v]

Known result: the number of m-steps is a reasonable cost model.

13 / 19



Positive Focusing is Directly Useful

14 / 19



Dissecting λvsc

λxpos is directly useful while λvsc is not.

In order to relate λvsc to λxpos, we define a core calculus of λvsc which is
essentially equivalent to λvsc and captures direct usefulness.

Step 1: Separate e-rules for variables (→evar) and abstractions (→eabs).

Step 2: Distinguish (directly) useful e-steps (→eu) from non useful
e-steps (→enu) for abstractions.

Core reduction = →m + →evar + →eu

Non-useful reduction = →enu

15 / 19



Dissecting λvsc

λxpos is directly useful while λvsc is not.

In order to relate λvsc to λxpos, we define a core calculus of λvsc which is
essentially equivalent to λvsc and captures direct usefulness.

Step 1: Separate e-rules for variables (→evar) and abstractions (→eabs).

Step 2: Distinguish (directly) useful e-steps (→eu) from non useful
e-steps (→enu) for abstractions.

Core reduction = →m + →evar + →eu

Non-useful reduction = →enu

15 / 19



Dissecting λvsc

λxpos is directly useful while λvsc is not.

In order to relate λvsc to λxpos, we define a core calculus of λvsc which is
essentially equivalent to λvsc and captures direct usefulness.

Step 1: Separate e-rules for variables (→evar) and abstractions (→eabs).

Step 2: Distinguish (directly) useful e-steps (→eu) from non useful
e-steps (→enu) for abstractions.

Core reduction = →m + →evar + →eu

Non-useful reduction = →enu

15 / 19



Dissecting λvsc

λxpos is directly useful while λvsc is not.

In order to relate λvsc to λxpos, we define a core calculus of λvsc which is
essentially equivalent to λvsc and captures direct usefulness.

Step 1: Separate e-rules for variables (→evar) and abstractions (→eabs).

Step 2: Distinguish (directly) useful e-steps (→eu) from non useful
e-steps (→enu) for abstractions.

Core reduction = →m + →evar + →eu

Non-useful reduction = →enu

15 / 19



Dissecting λvsc

λxpos is directly useful while λvsc is not.

In order to relate λvsc to λxpos, we define a core calculus of λvsc which is
essentially equivalent to λvsc and captures direct usefulness.

Step 1: Separate e-rules for variables (→evar) and abstractions (→eabs).

Step 2: Distinguish (directly) useful e-steps (→eu) from non useful
e-steps (→enu) for abstractions.

Core reduction = →m + →evar + →eu

Non-useful reduction = →enu

15 / 19



Dissecting λvsc

λxpos is directly useful while λvsc is not.

In order to relate λvsc to λxpos, we define a core calculus of λvsc which is
essentially equivalent to λvsc and captures direct usefulness.

Step 1: Separate e-rules for variables (→evar) and abstractions (→eabs).

Step 2: Distinguish (directly) useful e-steps (→eu) from non useful
e-steps (→enu) for abstractions.

Core reduction = →m + →evar + →eu

Non-useful reduction = →enu

15 / 19



Positive Focusing is Directly Useful

16 / 19



Big picture

λovsc (= Core λovsc + Non-useful)

t u∗t ′∗ ∗

Core λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the
number of m-steps

17 / 19



Big picture

λovsc (= Core λovsc + Non-useful)

t u∗t ′∗ ∗

Core λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the
number of m-steps

17 / 19



Big picture

λovsc (= Core λovsc + Non-useful)

t u∗t ′∗ ∗

Core λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the
number of m-steps

17 / 19



Big picture

λovsc (= Core λovsc + Non-useful)

t u∗t ′∗ ∗

Core λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the
number of m-steps

17 / 19



Big picture

λovsc (= Core λovsc + Non-useful)

t u∗t ′∗ ∗

Core λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the
number of m-steps

17 / 19



Big picture

λovsc (= Core λovsc + Non-useful)

t u∗t ′∗ ∗

Core λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the
number of m-steps

17 / 19



Big picture

λovsc (= Core λovsc + Non-useful)

t u∗t ′∗ ∗

Core λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the
number of m-steps

17 / 19



Conclusion and Future work

● We show that the compactness of λpos allows one to capture the
essence of usefulness. What is remarkable is that λpos is an outcome
of a study of term representation inspired by focusing.

● Future work:

1. efficient implementation of meta-level renamings involved in λpos.
We expect this to be doable in an efficient way via an appropriate
abstract machine.

2. λpos for call-by-need evaluation

18 / 19



Conclusion and Future work

● We show that the compactness of λpos allows one to capture the
essence of usefulness. What is remarkable is that λpos is an outcome
of a study of term representation inspired by focusing.

● Future work:

1. efficient implementation of meta-level renamings involved in λpos.
We expect this to be doable in an efficient way via an appropriate
abstract machine.

2. λpos for call-by-need evaluation

18 / 19



Conclusion and Future work

● We show that the compactness of λpos allows one to capture the
essence of usefulness. What is remarkable is that λpos is an outcome
of a study of term representation inspired by focusing.

● Future work:

1. efficient implementation of meta-level renamings involved in λpos.
We expect this to be doable in an efficient way via an appropriate
abstract machine.

2. λpos for call-by-need evaluation

18 / 19



Thank you for your attention!

19 / 19


