Proofs as Terms and Terms as Programs, Positively

Jui-Hsuan Wu

LIX, Ecole Polytechnique & Inria Saclay

LoVe seminar, LIPN

16 January 2025

1/29



Outline

Introduction

Proofs as Terms

Terms as Programs

2/29



Introduction

3/29



Syntax is everywhere

4/29



Syntax is everywhere

We live in a world full of syntactic structures.

4/29



Syntax is everywhere

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural
languages, etc.

4/29



Syntax is everywhere

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural
languages, etc.

Handling operations on terms can be tricky, especially with bindings.
® substitution
® equality checking
® evaluation

® sharing

4/29



Syntax is everywhere

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural
languages, etc.

Handling operations on terms can be tricky, especially with bindings.

substitution
equality checking
evaluation

sharing

Having a meta-theory is important for further studies.
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Proof theory and term representation

Need a highly prinicipled and mathematically sound meta-theory
< (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by
proofs.

In addition to the structure of terms,
other operations can sometimes be mimicked by operations on proofs.

— Curry-Howard correspondence.

Sometimes, operations on terms are not provided by proof theory for free, but
they can be inspired by some proof-theoretic observations.
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Gentzen's sequent calculus

We start by looking at the implicational fragment LJ5 of Gentzen's LJ.

Formulas are made of atoms «, 3, ..., and implications o.
; LB,B+-C r-B F,B»—CC
t
rB-B FBrC e u
I'»—Bl r7Bz}—B F,Bln—BQ

>R

o)
F,BlangB r}—BlDB2

Cut-elimination: the cut rule is not needed in terms of provability
— subformula property
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Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

.
B,B+C

MB+C
Is this contraction really needed?
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Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

.
B,B+C

MB+C
Is this contraction really needed?

2. Lack of canonicity. Consider the following proofs:

/ /
| B+ B: Bl,Bz’—B2DL
Bi>B:+ B> B, and B> By, Bi+ B
i Rl R
BioB,+-B1>B;

Are they equivalent?

These two problems become even more visible when one considers proof search.

" Flexibility in proof construction = Non-determinism in proof search”
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Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a
corresponding introduction rule.

I_781:>le— [_7813827 - C L
o]
I',Blng, ’—CC
F,Blngr—C
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1. Controlled contraction: a contraction should be directly followed by a
corresponding introduction rule.

I_751:>le— r7BlDBz7 - C L
o]
I',Blng, ’—CC
F,Blszr—C

2. Atomic initial rule & invertibility of o R.

® We only need the initial rule for atoms: |, lat
® The rule
I', Bl = Bz
—— >
'-B1o2B;

is invertible: when doing proof-search, we can always apply > R without
losing provability.

These considerations eventually led us to the focused proof system LJF-.
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Focusing, intuitively

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve
proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an
invertible rule is available, one can simply apply it!

This eventually leads to focusing:
® some invertible rules are available - apply them (negative phase)

® only non-invertible rules are available — choose one formula and focus on
it (and its subformulas) ( phase)
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Structure of focused proofs

Proofs obtained by focusing (also called focused proofs) are cut-free and have

an alternating phase structure:

borders

V4

} large-scale rule

} (= synthetic inference rule)
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Structure of focused proofs

Proofs obtained by focusing (also called focused proofs) are cut-free and have
an alternating phase structure:

large-scale rule

borders
(= synthetic inference rule)

Proofs can be seen as built with some larger units (phases, synthetic
connectives, synthetic inference rules, etc) rather than tiny inference rules.
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Focused proof system LJF,

In LJF5, formulas are polarized: the system is equipped with a polarization
0:ATOM — {—, +}.

To make phases explicit, we add arrows (f, |/) to sequents:
* Negative phase (for invertible rules) I+ B )
® Positive phase (for non-invertible rules) I'| B-a or T+ B

® Border: sequents with no arrows [ — «

Rules:
/ 5(04):— B ——— // (S(O!)=+ —_— IR r’N NI—OL , \
Nara MNara L N-a
r r B+a r=N
sys T p o TEe g sgy-s DT g " g,
M- o MN-af rNgra r=nN
rFBl r BQFO[ r,BlkB2ﬂ

oL — 5 R
r BlDBQD—Oc Fn—BlzBQﬂ
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Two-phase structure of LJF- proofs

/R /l

Fyra rylgrp
)

Nyla>Brp

Myr8
r,

YEB1 s,
FMy=61 R
TeoSat
Fy2 81 R
Fr-~v-p Fréré

Fl(y=p)26r6
a,adfB,(y>2B)2d6+-4

L
D,

R
I

oL

/

13/29



Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!
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Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MNasfra

v=8

MaspBry
So we have the synthetic inference rule
Nasfra

VZBFADBFW
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Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MNasfra

v=8

MaspBry
So we have the synthetic inference rule
Nasfra

v=8 MaspBry

This depends on the polarization chosen!
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Imagine that we want to consider some formula B to be an axiom in LJ-.
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Extending LJ5

Imagine that we want to consider some formula B to be an axiom in LJ-.

We can simply put it on the L.H.S. However, this might not be ideal at times.

What | have:
MNaioazoasrar lNaioaxdaz,ccda3+

r,OélDOJQDOBI—,@

What | probably want:

MNoaioaoaz oy MNaioaz>as - az Mai>azd>as,as+ B

MNaioazoas+ B

" Synthetic inference rules to the rescue”

synthetic add to LJs

r,B,rlFOll r,B,rkFak Mo F, M=o

r7B'_a e
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Bi,...,Bn.
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What do proofs look like?

Let By =ao>a1,...,Bs=aop> 2 ap,... and consider the extensions of LJ by
Bi,...,Bn.

What are the proofs of ag + ay?

When «; are all given the negative polarity, we have:

MN-ay TFay Trao MN-ao - Trap
r>—a1 ri—az I'»—an

There is a unique proof of exponential size.

When «; are all given the polarity, we have:
Maj,ar-a N ag,0n,00Fa I ag,...,0p-1,0n -
Mook« I oo, a1 -« M ag,...,an-1+«

There is a shortest proof of linear size.
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Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the negative polarity, we have:

[+~ 1t: oo - t: oo Ml-ti:on

[+ Bito: o1 [+ Bototy : o

MN=to: oo M tho1:ane

I+ Bptoth-1:n
The unique proof of ap + a4 is annotated by the term:

Bs xo (B1 x0) (B2 x0 (B1 x0))
(B3 x0 (B1 x0) (B2 x0 (B1 x0)))
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Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the positive polarity, we have:

MNa,ar+-a o, 1,00 -«

Moo+« I a1+«
M ao,...,an-1,00 -«
I ag,...,0n-1+«
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Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the positive polarity, we have:
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Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the positive polarity, we have:

Mxo:ao,xitaarFt:a Mxo:ao,x1:a1,x:akFt:a

Moxo:ao - Bixo(Axi.t) e Tyxo:ap,x1:oq - Baxoxi(Axe.t)

(X0 Q0 ooy Xn1 8 Qpe1, Xn i Qp T2 @0

[, X0 @Oy« vy Xno1 t Qpo1 F BpxoXno1 (Axn 1) T

The shortest proof of ag - aus is annotated by the term:

(B1 xo (Axa.
(B2 xo x1 (Ax2.
(Bs xo x1 2 (Ax3.
(Ba xo x1 %2 x3 (Axa. xa))))))))
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Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

acel

M-«

lN-a TN«

MN-a

Mok«

oY

ais
ael
M«
Mar
{oz,a}EFia
M-«

Nara [§Nara

M-«

18/29



Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

x:ael
lN-a TN«
MN-a

Mok«

oY

MN-x:«

ais
ael
M«
Mar
{oz,a}EFia
M-«

Nara [§Nara

M-«

18/29



Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

x:a€el ——
MN-x:«

| I " lFu:a

M-tu:a

Mok«

oY

ais
ael
M-«
Mar
{oe,oe}EFia
M-«

Nara [Nara

M-«

18/29



Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

x:a€el ——
MN-x:«

| I " lFu:a

M-tu:a

Mx:art:«

M- x.t:«

ais
ael
M-«
Mar
{oe,oe}EFia
M-«

Nara [Nara

M-«

18/29



Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.

a is negative ais
x:a€el —— x:ael ——
MN-x:« MN-x:«
lN-t:a Tru:a MNara
{a,aycl ———
M-tu:a [«
Mx:art:a MNoara Tora

M- x.t:« M-«

18/29



Two presentations of untyped A-terms

By considering the two axioms a > @ > a and (@ > «) o v, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.
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Two presentations of untyped A-terms

By considering the two axioms a2 @ >« and (@ 2 @) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.
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Two presentations of untyped A-terms

By considering the two axioms a2 @ >« and (@ 2 @) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.

a is negative ois
x:o€el —— x:ael ——
N-x:a M-x:a
] : Mx:art:a
N-t:a Tru:a {y:az:ajer 227
M-tu:a - tx<yz]:a
Mx:art:a Ny:aru:a [Mx:art:a
MN-Xx.t:a M- tix<Ay.u]:a

negative \-terms positive \-terms
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Unfolding and substitution

In LJF, we have a systematic way of transforming a positively polarized proof
into a negatively polarized one.
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Unfolding and substitution

In LJF, we have a systematic way of transforming a positively polarized proof
into a negatively polarized one.

This provides a way to turn a positive A-term into its corresponding (negative)
A-term, which consists of unfolding all the shared structures in the positive
A-term:

x=x  tlxeyz=tixeyzh  txedya] = Hxedy)

Terms correspond to cut-free proofs.

Introducing a cut between two cut-free proofs and applying cut-elimination
provides a natural definition of (meta-level) substitution. For positive A-terms,

tix/  E(y) 1=E(t{x=y})
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Terms as Programs
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A-terms with sharing

Positive A-terms are A-terms with sharing.
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A-terms with sharing
Positive A-terms are A-terms with sharing.

A-terms with sharing/explicit substitutions are given by:

t,u = x| tu| Ax.t| t[x<u] (explicit substitution)

In CbV, there are many possible ways to restrict the shape of applications:

[-] value as the left subterm of
([uDDx[t]] an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

I-1 (xy)[x<[t]][y<[u]] values as both subterms ---

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

Xy (zw)y

substituting zw for x
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Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications.
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Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications.
Now we have nine different forms of applications:

® the general form tu

® eight forms vu, xu, tv/, w’, xv', ty, vy, and xy.
Some more ways to classify/design call-by-value calculi with ESs.
® Nested or flattened ESs: t[x«ul[y<r]] vs. t[x«u][y«<r]

® Small-step vs. micro-step substitutions:

() [x<1] =1
VS,
() [x<1] = (Ix)[x<1] = (IN[x<I] =1

® Variables as values?

22/29



Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

Cl)[xev] = C(v)[xv]
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(xot) [xoexa ] [xaexa] -+ [xe-1 X ] [x1]
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=" (ot) o] act] D] [xel]

Positive A-calculus has no such issues!
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Key fact: Apos (resp. Axpos) is directly useful by definition!
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Future work

® Towards a better understanding of polarities (of atomic formulas) in full

linear logic.

¢ Efficient implementation of meta-level renamings involved in Ap.s. We
expect this to be doable in an efficient way via an appropriate abstract
machine.

® Apos for call-by-need evaluation.
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Thank you for listening!
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