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Syntax is everywhere

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural
languages, etc.

Handling operations on terms can be tricky, especially with bindings.

● substitution

● equality checking

● evaluation

● sharing

Having a highly principled meta-theory is important for further studies.
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Proof theory and term representation

Need a highly prinicipled and mathematically sound meta-theory
↪ (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by
annotating proofs.

In addition to the structure of terms,
other operations can sometimes be mimicked by operations on proofs.

↪ Curry-Howard correspondence.

Sometimes, operations on terms are not provided by proof theory for free, but
they can be inspired by some proof-theoretic observations.
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Proofs as Terms
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Gentzen’s sequent calculus

We start by looking at the implicational fragment LJ⊃ of Gentzen’s LJ.

Formulas are made of atoms α,β, . . ., and implications ⊃.

I
Γ,B ⊢ B

Γ,B,B ⊢ C
C

Γ,B ⊢ C

Γ ⊢ B Γ,B ⊢ C
Cut

Γ ⊢ C

Γ ⊢ B1 Γ,B2 ⊢ B ⊃ L
Γ,B1 ⊃ B2 ⊢ B

Γ,B1 ⊢ B2 ⊃ R
Γ ⊢ B1 ⊃ B2

Cut-elimination: the cut rule is not needed in terms of provability
↪ subformula property
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Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

Π
Γ,B,B ⊢ C

C
Γ,B ⊢ C

Is this contraction really needed?

2. Lack of canonicity. Consider the following proofs:

I
B1 ⊃ B2 ⊢ B1 ⊃ B2

and

I
B1 ⊢ B1

I
B1,B2 ⊢ B2 ⊃ L

B1 ⊃ B2,B1 ⊢ B2 ⊃ R
B1 ⊃ B2 ⊢ B1 ⊃ B2

Are they equivalent?

These two problems become even more visible when one considers proof search.

”Flexibility in proof construction = Non-determinism in proof search”
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Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a
corresponding introduction rule.

Γ,B1 ⊃ B2 ⊢ B1 Γ,B1 ⊃ B2,B2 ⊢ C ⊃ L
Γ,B1 ⊃ B2,B1 ⊃ B2 ⊢ C

C
Γ,B1 ⊃ B2 ⊢ C

2. Atomic initial rule & invertibility of ⊃ R.
● We only need the initial rule for atoms: Iat

Γ, α ⊢ α● The rule
Γ,B1 ⊢ B2 ⊃ R
Γ ⊢ B1 ⊃ B2

is invertible: when doing proof-search, we can always apply ⊃ R without
losing provability.

These considerations eventually led us to the focused proof system LJF⊃.
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Focusing, intuitively

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve
proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an
invertible rule is available, one can simply apply it!

This eventually leads to focusing:

● some invertible rules are available → apply them (negative phase)

● only non-invertible rules are available → choose one formula and focus on
it (and its subformulas) (positive phase)
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Structure of focused proofs

Proofs obtained by focusing (also called focused proofs) are cut-free and have
an alternating phase structure:

−
+

−
+

−

⋮

large-scale rule

(= synthetic inference rule)

borders

Proofs can be seen as built with some larger units (phases, synthetic
connectives, synthetic inference rules, etc) rather than tiny inference rules.
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Focused proof system LJF⊃
In LJF⊃, formulas are polarized: the system is equipped with a polarization
δ ∶ ATOM→ {−,+}.

To make phases explicit, we add arrows (⇑, ⇓) to sequents:

● Negative phase (for invertible rules) Γ ⊢ B ⇑
● Positive phase (for non-invertible rules) Γ⇓B ⊢ α or Γ ⊢ B ⇓
● Border: sequents with no arrows Γ ⊢ α

Rules:'

&

$

%

δ(α) = − Il
Γ⇓α ⊢ α

δ(α) = + IR
Γ, α ⊢ α⇓

Γ,N ⇓N ⊢ α
Dl

Γ,N ⊢ α

Γ ⊢ α⇓
δ(α) = + Dr

Γ ⊢ α

Γ ⊢ α
Sr

Γ ⊢ α⇑
Γ, β ⊢ α

δ(β) = + Rl
Γ⇓β ⊢ α

Γ ⊢ N ⇑
Rr

Γ ⊢ N ⇓

Γ ⊢ B1 ⇓ Γ⇓B2 ⊢ α ⊃ L
Γ⇓B1 ⊃ B2 ⊢ α

Γ,B1 ⊢ B2 ⇑ ⊃ R
Γ ⊢ B1 ⊃ B2 ⇑
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Two-phase structure of LJF⊃ proofs

IR
Γ, γ ⊢ α⇓ Il

Γ, γ ⇓β ⊢ β ⊃ L
Γ, γ ⇓α ⊃ β ⊢ β

Dl
Γ, γ ⊢ β

Sr
Γ, γ ⊢ β ⇑

Sl
Γ⇑γ ⊢ β ⇑ ⊃ R
Γ ⊢ γ ⊃ β ⇑

Rr
Γ ⊢ γ ⊃ β ⇓ Il

Γ⇓ δ ⊢ δ ⊃ L
Γ⇓ (γ ⊃ β) ⊃ δ ⊢ δ

Dl
α,α ⊃ β, (γ ⊃ β) ⊃ δ ⊢ δ
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Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula α ⊃ β on the L.H.S. be used (both α and β are negative)?

Γ, α ⊃ β ⊢ α

Γ, α ⊃ β ⊢ α⇑
Γ, α ⊃ β ⊢ α⇓ γ = β

Γ, α ⊃ β ⇓β ⊢ γ

Γ, α ⊃ β ⇓α ⊃ β ⊢ γ

Γ, α ⊃ β ⊢ γ

So we have the synthetic inference rule

Γ, α ⊃ β ⊢ α
γ = β

Γ, α ⊃ β ⊢ γ

This depends on the polarization chosen!
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Extending LJ⊃

Imagine that we want to consider some formula B to be an axiom in LJ⊃.

We can simply put it on the L.H.S. However, this might not be ideal at times.

What I have:

Γ, α1 ⊃ α2 ⊃ α3 ⊢ α1 Γ, α1 ⊃ α2 ⊃ α3, α2 ⊃ α3 ⊢ β

Γ, α1 ⊃ α2 ⊃ α3 ⊢ β

What I probably want:

Γ, α1 ⊃ α2 ⊃ α3 ⊢ α1 Γ, α1 ⊃ α2 ⊃ α3 ⊢ α2 Γ, α1 ⊃ α2 ⊃ α3, α3 ⊢ β

Γ, α1 ⊃ α2 ⊃ α3 ⊢ β

”Synthetic inference rules to the rescue”

synthetic add to LJ⊃

Γ,B,Γ1 ⊢ α1 ⋯ Γ,B,Γk ⊢ αk⋯
Γ,B ⊢ α

Γ,Γ1 ⊢ α1 ⋯ Γ,Γk ⊢ αk⋯
Γ ⊢ α
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What do proofs look like?

Let B1 = α0 ⊃ α1, . . . ,Bn = α0 ⊃ ⋯ ⊃ αn, . . . and consider the extensions of LJ by
B1, . . . ,Bn.

What are the proofs of α0 ⊢ αn?

When αi are all given the negative polarity, we have:

Γ ⊢ α0

Γ ⊢ α1

Γ ⊢ α0 Γ ⊢ α1

Γ ⊢ α2

⋯ Γ ⊢ α0 ⋯ Γ ⊢ αn−1
Γ ⊢ αn

⋯

There is a unique proof of exponential size.

When αi are all given the positive polarity, we have:

Γ, α0, α1 ⊢ α

Γ, α0 ⊢ α

Γ, α0, α1, α2 ⊢ α

Γ, α0, α1 ⊢ α
⋯ Γ, α0, . . . , αn−1, αn ⊢ α

Γ, α0, . . . , αn−1 ⊢ α
⋯

There is a shortest proof of linear size.
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Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When αi are all given the negative polarity, we have:

Γ ⊢ α0

Γ ⊢ α1

Γ ⊢ α0 Γ ⊢ α1

Γ ⊢ α2

⋯

Γ ⊢ α0 ⋯ Γ ⊢ αn−1
Γ ⊢ αn

The unique proof of α0 ⊢ α4 is annotated by the term:

B4 x0 (B1 x0) (B2 x0 (B1 x0))
(B3 x0 (B1 x0) (B2 x0 (B1 x0)))
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Two presentations of untyped λ-terms

By considering the two axioms α ⊃ α ⊃ α and (α ⊃ α) ⊃ α, and by annotating
the rules, we obtain two different presentations of untyped λ-terms by using the
two uniform polarizations.

α is negative

α ∈ Γ
Γ ⊢ α

Γ ⊢ α Γ ⊢ α

Γ ⊢ α

Γ, α ⊢ α

Γ ⊢ α

negative λ-terms

α is positive

α ∈ Γ
Γ ⊢ α

Γ, α ⊢ α{α,α} ⊑ Γ
Γ ⊢ α

Γ, α ⊢ α Γ, α ⊢ α

Γ ⊢ α

positive λ-terms
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Unfolding and substitution

In LJF , we have a systematic way of transforming a positively polarized proof
into a negatively polarized one.

This provides a way to turn a positive λ-term into its corresponding (negative)
λ-term, which consists of unfolding all the shared structures in the positive
λ-term:

x = x t[x�yz] = t{x�yz} t[x�λy .u] = t{x�λy .u}

Terms correspond to cut-free proofs.

Introducing a cut between two cut-free proofs and applying cut-elimination
provides a natural definition of (meta-level) substitution. For positive λ-terms,

t[x/ E⟨y⟩
²

y[⋯�⋯]⋯[⋯�⋯]

] = E⟨t{x�y}⟩
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Terms as Programs
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λ-terms with sharing

Positive λ-terms are λ-terms with sharing.

λ-terms are given by:
t,u ∶∶= x ∣ tu ∣ λx .t

In CbV, there are many possible ways to restrict the shape of applications:

tu

(xJuK)[x�JtK]

(JtKx)[x�JuK]

(xy)[x�JtK][y�JuK]

J ⋅ K

J ⋅ K

J ⋅ K

value as the left subterm of
an application

value as the right subterm ⋯

values as both subterms ⋯

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

xy

substituting zw for x

(zw)yX
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Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications.

Now we have nine different forms of applications:

● the general form tu

● eight crumbled forms vu, xu, tv ′, vv ′, xv ′, ty , vy , and xy .

Some more ways to classify/design call-by-value calculi with ESs.

● Nested or flattened ESs: t[x�u[y�r]] vs. t[x�u][y�r]
● Small-step vs. micro-step substitutions:

(xx)[x�I]→ II
vs.

(xx)[x�I]→ (Ix)[x�I]→ (II)[x�I]→ II

● Variables as values?
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Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

C⟨x⟩[x�v]→ C⟨v⟩[x�v]
What about making a substitution only when it contributes to the creation of
some β-redexes?

Consider
(yx)[x�I]→ (y I)[x�I]

There is no β-redex created after this substitution, and there won’t be any
β-redex created in the future → non-useful

Some more examples:

● (xy)[x�I]→ (Iy)[x�I] is useful
● x[x�I]→ I[x�I] is non-useful
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Usefulness: subtleties

● Contextual closure:
x[x�I]→ I[x�I] is non-useful
while x[x�I]y → I[x�I]y is useful

● Indirect usefulness:
(xy)[x�z][z�I]→ (xy)[x�I][z�I]
↪ It is useful!

● Renaming chains:

(x0t)[x0�x1][x1�x2]⋯[xk−1�xk][xk�I]
→ (x0t)[x0�x1][x1�x2]⋯[xk−1�I][xk�I]
→∗ (x0t)[x0�I][x1�I]⋯[xk−1�I][xk�I]

Positive λ-calculus has no such issues!
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Positive λ-calculus λpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]
● ESs are flattened.
● Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not

exist!

Example of reduction:

x[x�yy][y�zz ′][z�λw .w ′[w ′�ww]]
→oe+ x[x�yy][y�(λw .w ′[w ′�ww])z ′][z�λw .w ′[w ′�ww]]

x[x�w ′1w
′
1][w ′1�z ′z ′][z�λw .w ′[w ′�ww]]

Key fact: λpos (resp. λxpos) is directly useful by definition!
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Explicit positive λ-calculus λxpos

t,u ∶∶= x ∣ t[x�yz] ∣ t[x�λy .u]
● ESs are flattened.
● Restricted form of explicit substitutions:

1. Minimalistic application yz
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Positive λ-calculus captures the essence of usefulness

λovsc (= Useful λovsc + Non-useful)

t u∗t ′∗ ∗
Useful λovsc

≡

Non-useful

JtK Jt ′K

≡

∗

λoxpos

Termination
Equivalence

preserves the number
of m-steps
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Summing up

Focusing

Term representation

Annotating proofs

with terms
Curry-Howard? No!

Annotating cut-free

proofs with terms

LJF⊃

polarized

with negative atoms with positive atoms

tree-like syntax

no sharing

DAG-like syntax

allows sharing
negative/usual λ-terms positive λ-terms

[CSL 2023]
w/ Miller

λ-calculus

→β

positive λ-calculus?

?

t ∶∶= x ∣ t[x�yz] ∣ t[x�λy.u]

→pos

λ-graphs with
bodies

z→

[APLAS 2023]

Sharingλvsc = +

useful λvsc

non-useful λvsc

[MFPS 2024]
w/ Accattoli
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Future work

● Towards a better understanding of polarities (of atomic formulas) in full
linear logic.

● Efficient implementation of meta-level renamings involved in λpos. We
expect this to be doable in an efficient way via an appropriate abstract
machine.

● λpos for call-by-need evaluation.
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Thank you for listening!
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