Proofs as Terms and Terms as Programs, Positively

Jui-Hsuan Wu

LIX, Ecole Polytechnique & Inria Saclay

LoVe seminar, LIPN

16 January 2025

Outline

Introduction

Proofs as Terms

Terms as Programs

Introduction

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural languages, etc.

Handling operations on terms can be tricky, especially with bindings.

- substitution
- equality checking
- evaluation
- sharing

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural languages, etc.

Handling operations on terms can be tricky, especially with bindings.

- substitution
- equality checking
- evaluation
- sharing

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural languages, etc.

Handling operations on terms can be tricky, especially with bindings.

- substitution
- equality checking
- evaluation
- sharing

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural languages, etc.

Handling operations on terms can be tricky, especially with bindings.

- substitution
- equality checking
- evaluation
- sharing

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural languages, etc.

Handling operations on terms can be tricky, especially with bindings.

- substitution
- equality checking
- evaluation
- sharing

Need a highly prinicipled and mathematically sound meta-theory ↔ (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by annotating proofs.

In addition to the structure of terms, other operations can sometimes be mimicked by operations on proofs.

→ Curry-Howard correspondence.

Need a highly prinicipled and mathematically sound meta-theory → (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by annotating proofs.

In addition to the structure of terms, other operations can sometimes be mimicked by operations on proofs.

→ Curry-Howard correspondence.

Need a highly prinicipled and mathematically sound meta-theory → (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by annotating proofs.

In addition to the structure of terms, other operations can sometimes be mimicked by operations on proofs.

→ Curry-Howard correspondence.

Need a highly prinicipled and mathematically sound meta-theory → (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by annotating proofs.

In addition to the structure of terms, other operations can sometimes be mimicked by operations on proofs.

→ Curry-Howard correspondence.

Need a highly prinicipled and mathematically sound meta-theory → (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by annotating proofs.

In addition to the structure of terms, other operations can sometimes be mimicked by operations on proofs.

→ Curry-Howard correspondence.

Need a highly prinicipled and mathematically sound meta-theory → (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by annotating proofs.

In addition to the structure of terms,

other operations can sometimes be mimicked by operations on proofs.

→ Curry-Howard correspondence.

Proofs as Terms

Gentzen's sequent calculus

We start by looking at the implicational fragment LJ_{\supset} of Gentzen's LJ. Formulas are made of atoms α, β, \ldots , and implications \supset .

$$\frac{\Gamma}{\Gamma, B \vdash B} I = \frac{\Gamma, B, B \vdash C}{\Gamma, B \vdash C} C = \frac{\Gamma \vdash B}{\Gamma \vdash C} \Gamma, B \vdash C \quad Cut$$
$$\frac{\Gamma \vdash B_1}{\Gamma, B_1 \supset B_2 \vdash B} \supset L = \frac{\Gamma, B_1 \vdash B_2}{\Gamma \vdash B_1 \supset B_2} \supset R$$

Cut-elimination: the *cut* rule is not needed in terms of provability \hookrightarrow subformula property

Problems with sequent calculus

There are, however, some problems with this proof system:

 $1. \ \mbox{Non-controlled contraction}. \ \mbox{Consider the proof}$

$$\frac{\prod_{r,B,B \vdash C}}{\prod_{r,B \vdash C} C} C$$

Is this contraction really needed?

2. Lack of canonicity. Consider the following proofs:

$$\frac{1}{B_1 \supset B_2 \vdash B_1 \supset B_2} I \quad \text{and} \quad \frac{\frac{B_1 \vdash B_1}{B_1 \supset B_2, B_1 \vdash B_2}}{\frac{B_1 \supset B_2, B_1 \vdash B_2}{B_1 \supset B_2 \vdash B_1 \supset B_2}} \supset R$$

Are they equivalent?

These two problems become even more visible when one considers proof search.

'Flexibility in proof construction = Non-determinism in proof search"

Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

$$\frac{\prod_{F,B,B \vdash C}}{\prod_{F,B \vdash C} C} C$$

Is this contraction really needed?

2. Lack of canonicity. Consider the following proofs:

$$\frac{1}{B_1 \supset B_2 \vdash B_1 \supset B_2} I \quad \text{and} \quad \frac{\frac{B_1 \vdash B_1}{B_1 \supset B_2, B_1 \vdash B_2}}{\frac{B_1 \supset B_2, B_1 \vdash B_2}{B_1 \supset B_2 \vdash B_1 \supset B_2} \supset R} \stackrel{I}{\supset} L$$

Are they equivalent?

These two problems become even more visible when one considers proof search.

'Flexibility in proof construction = Non-determinism in proof search"

Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

$$\frac{\prod_{F,B,B \vdash C}}{\prod_{F,B \vdash C} C} C$$

Is this contraction really needed?

2. Lack of canonicity. Consider the following proofs:

$$\frac{1}{B_1 \supset B_2 \vdash B_1 \supset B_2} I \quad \text{and} \quad \frac{\frac{B_1 \vdash B_1}{B_1 \supset B_2, B_1 \vdash B_2}}{\frac{B_1 \supset B_2, B_1 \vdash B_2}{B_1 \supset B_2 \vdash B_1 \supset B_2} \supset R} \stackrel{I}{\supset} L$$

Are they equivalent?

These two problems become even more visible when one considers proof search.

"Flexibility in proof construction = Non-determinism in proof search"

Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a corresponding introduction rule.

$$\frac{\Gamma, B_1 \supset B_2 \vdash B_1 \qquad \Gamma, B_1 \supset B_2, B_2 \vdash C}{\frac{\Gamma, B_1 \supset B_2, B_1 \supset B_2 \vdash C}{\Gamma, B_1 \supset B_2 \vdash C}} \supset L$$

2. Atomic initial rule & invertibility of $\supset R$.

- We only need the initial rule for atoms: $\overline{\Gamma, \alpha \vdash \alpha}^{I_{at}}$
- The rule

$$\frac{\Gamma, B_1 \vdash B_2}{\Gamma \vdash B_1 \supset B_2} \supset R$$

is invertible: when doing proof-search, we can always apply $\supset R$ without losing provability.

These considerations eventually led us to the focused proof system LJF_{\neg} .

Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a corresponding introduction rule.

$$\frac{\Gamma, B_1 \supset B_2 \vdash B_1 \qquad \Gamma, B_1 \supset B_2, B_2 \vdash C}{\frac{\Gamma, B_1 \supset B_2, B_1 \supset B_2 \vdash C}{\Gamma, B_1 \supset B_2 \vdash C}} \supset L$$

- 2. Atomic initial rule & invertibility of $\supset R$.
 - We only need the initial rule for atoms: $\overline{\Gamma, \alpha \vdash \alpha} I_{at}$
 - The rule

$$\frac{\Gamma, B_1 \vdash B_2}{\Gamma \vdash B_1 \supset B_2} \supset R$$

is invertible: when doing proof-search, we can always apply $\supset R$ without losing provability.

These considerations eventually led us to the focused proof system LJF_{\supset} .

Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a corresponding introduction rule.

$$\frac{\Gamma, B_1 \supset B_2 \vdash B_1 \qquad \Gamma, B_1 \supset B_2, B_2 \vdash C}{\frac{\Gamma, B_1 \supset B_2, B_1 \supset B_2 \vdash C}{\Gamma, B_1 \supset B_2 \vdash C}} \supset L$$

- 2. Atomic initial rule & invertibility of $\supset R$.
 - We only need the initial rule for atoms: $\overline{\Gamma, \alpha \vdash \alpha} I_{at}$
 - The rule

$$\frac{\Gamma, B_1 \vdash B_2}{\Gamma \vdash B_1 \supset B_2} \supset R$$

is invertible: when doing proof-search, we can always apply $\supset R$ without losing provability.

These considerations eventually led us to the focused proof system LJF_{\supset} .

Focusing, intuitively

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an invertible rule is available, one can simply apply it!

- some invertible rules are available \rightarrow apply them (negative phase)
- only non-invertible rules are available → choose one formula and focus on it (and its subformulas) (positive phase)

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an invertible rule is available, one can simply apply it!

- some invertible rules are available \rightarrow apply them (negative phase)
- only non-invertible rules are available → choose one formula and focus on it (and its subformulas) (positive phase)

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an invertible rule is available, one can simply apply it!

- some invertible rules are available \rightarrow apply them (negative phase)
- only non-invertible rules are available → choose one formula and focus on it (and its subformulas) (positive phase)

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an invertible rule is available, one can simply apply it!

- some invertible rules are available → apply them (negative phase)
- only non-invertible rules are available → choose one formula and focus on it (and its subformulas) (positive phase)

Structure of focused proofs

Proofs obtained by focusing (also called focused proofs) are cut-free and have an alternating phase structure:

Proofs can be seen as built with some larger units (phases, synthetic connectives, synthetic inference rules, etc) rather than tiny inference rules.

Structure of focused proofs

Proofs obtained by focusing (also called focused proofs) are cut-free and have an alternating phase structure:

Proofs can be seen as built with some larger units (phases, synthetic connectives, synthetic inference rules, etc) rather than tiny inference rules.

Focused proof system LJF_{\neg}

In LJF_{\neg} , formulas are polarized: the system is equipped with a polarization δ : ATOM \rightarrow {-,+}.

To make phases explicit, we add arrows (\uparrow, \downarrow) to sequents:

- Negative phase (for invertible rules) $\Gamma \vdash B \uparrow$
- Positive phase (for non-invertible rules) $\Gamma \Downarrow B \vdash \alpha$ or $\Gamma \vdash B \Downarrow$
- Border: sequents with no arrows $\Gamma \vdash \alpha$

Rules:

$$\delta(\alpha) = -\frac{1}{\Gamma \Downarrow \alpha \vdash \alpha} I_{l} \quad \delta(\alpha) = +\frac{1}{\Gamma, \alpha \vdash \alpha \Downarrow} I_{R} \quad \frac{\Gamma, N \Downarrow N \vdash \alpha}{\Gamma, N \vdash \alpha} D_{l}$$

$$\delta(\alpha) = +\frac{\Gamma \vdash \alpha \Downarrow}{\Gamma \vdash \alpha} D_{r} \quad \frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \uparrow} S_{r} \quad \delta(\beta) = +\frac{\Gamma, \beta \vdash \alpha}{\Gamma \Downarrow \beta \vdash \alpha} R_{l} \quad \frac{\Gamma \vdash N \uparrow}{\Gamma \vdash N \Downarrow} R_{r}$$

$$\frac{\Gamma \vdash B_{1} \Downarrow \Gamma \Downarrow B_{2} \vdash \alpha}{\Gamma \Downarrow B_{1} \supset B_{2} \vdash \alpha} \supset L \quad \frac{\Gamma, B_{1} \vdash B_{2} \uparrow}{\Gamma \vdash B_{1} \supset B_{2} \uparrow} \supset R$$

Two-phase structure of LJF_{\supset} proofs

$$\frac{\overline{\Gamma, \gamma \vdash \alpha \downarrow} I_{R} \overline{\Gamma, \gamma \downarrow \beta \vdash \beta}}{\frac{\Gamma, \gamma \downarrow \alpha \supset \beta \vdash \beta}{\Gamma, \gamma \vdash \beta} D_{I}} \stackrel{I_{I}}{\supset L} \\
\frac{\overline{\Gamma, \gamma \vdash \beta}}{\frac{\Gamma, \gamma \vdash \beta \uparrow}{\Gamma, \gamma \vdash \beta \uparrow} S_{I}} S_{I} \\
\frac{\overline{\Gamma \uparrow \gamma \vdash \beta \uparrow}}{\frac{\Gamma \vdash \gamma \supset \beta \uparrow}{\Gamma \vdash \gamma \supset \beta \downarrow} R_{I}} \stackrel{\Gamma \downarrow \delta \vdash \delta}{R_{I}} \stackrel{I_{I}}{\supset L} \\
\frac{\overline{\Gamma \downarrow (\gamma \supset \beta) \supset \delta \vdash \delta}}{\frac{\Gamma \downarrow (\gamma \supset \beta) \supset \delta \vdash \delta}{\alpha, \alpha \supset \beta, (\gamma \supset \beta) \supset \delta \vdash \delta} D_{I}$$

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

$$\frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \alpha} \qquad \gamma = \beta \\
\frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \alpha} \qquad \frac{\Gamma, \alpha \supset \beta \Downarrow \alpha \supset \beta \vdash \gamma}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

$$\frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \alpha \ddagger} \qquad \gamma = \beta \quad \frac{\Gamma, \alpha \supset \beta \vdash \alpha \ddagger}{\Gamma, \alpha \supset \beta \vdash \alpha \supset \beta \vdash \gamma} \\
\frac{\Gamma, \alpha \supset \beta \Downarrow \alpha \supset \beta \vdash \gamma}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

$$\frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \alpha \downarrow} \qquad \gamma = \beta \qquad \frac{\Gamma, \alpha \supset \beta \vdash \alpha \downarrow}{\Gamma, \alpha \supset \beta \vdash \alpha \supset \beta \vdash \gamma} \qquad \frac{\Gamma, \alpha \supset \beta \Downarrow \alpha \supset \beta \vdash \gamma}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

$$\frac{\overline{\Gamma, \alpha \supset \beta \vdash \alpha}}{\overline{\Gamma, \alpha \supset \beta \vdash \alpha \Downarrow}} \qquad \gamma = \beta \quad \frac{\overline{\Gamma, \alpha \supset \beta \downarrow \beta \vdash \alpha \Uparrow}}{\overline{\Gamma, \alpha \supset \beta \downarrow \beta \vdash \gamma}} \\
\frac{\overline{\Gamma, \alpha \supset \beta \downarrow \alpha \supset \beta \vdash \gamma}}{\overline{\Gamma, \alpha \supset \beta \vdash \gamma}}$$

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

$$\frac{\overline{\Gamma, \alpha \supset \beta \vdash \alpha}}{\overline{\Gamma, \alpha \supset \beta \vdash \alpha \downarrow}} \qquad \gamma = \beta \quad \frac{\overline{\Gamma, \alpha \supset \beta \vdash \alpha \uparrow}}{\overline{\Gamma, \alpha \supset \beta \downarrow \beta \vdash \gamma}} \\
\frac{\overline{\Gamma, \alpha \supset \beta \downarrow \alpha \supset \beta \vdash \gamma}}{\overline{\Gamma, \alpha \supset \beta \vdash \gamma}}$$

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

$$\frac{\frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \alpha \Downarrow}}{\frac{\Gamma, \alpha \supset \beta \vdash \alpha \Downarrow}{\Gamma, \alpha \supset \beta \vdash \alpha \supset}} \qquad \gamma = \beta \frac{\Gamma, \alpha \supset \beta \Downarrow \beta \vdash \gamma}{\Gamma, \alpha \supset \beta \vdash \alpha \supset}$$

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$
Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

$$\frac{\frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \alpha \Downarrow}}{\frac{\Gamma, \alpha \supset \beta \vdash \alpha \Downarrow}{\Gamma, \alpha \supset \beta \vdash \alpha \supset \beta}} \qquad \gamma = \beta \frac{\Gamma, \alpha \supset \beta \Downarrow \beta \vdash \gamma}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

This depends on the polarization chosen!

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\mathsf{\Gamma}, \alpha \supset \beta \vdash \alpha}{\mathsf{\Gamma}, \alpha \supset \beta \vdash \gamma}$$

This depends on the polarization chosen!

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be *used* from a proof-search point of view!

Example:

How can the formula $\alpha \supset \beta$ on the L.H.S. be used (both α and β are negative)?

So we have the synthetic inference rule

$$\gamma = \beta \ \frac{\Gamma, \alpha \supset \beta \vdash \alpha}{\Gamma, \alpha \supset \beta \vdash \gamma}$$

This depends on the polarization chosen!

Extending LJ_{\supset}

Imagine that we want to consider some formula B to be an axiom in LJ_{\neg} . We can simply put it on the L.H.S. However, this might not be ideal at times. What I have:

$$\frac{\Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \alpha_1 \qquad \Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3, \alpha_2 \supset \alpha_3 \vdash \beta}{\Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \beta}$$

What I probably want:

"Synthetic inference rules to the rescue"

synthetic

add to LJ_{\neg}

$$\cdots \frac{\Gamma, B, \Gamma_1 \vdash \alpha_1 \cdots \Gamma, B, \Gamma_k \vdash \alpha_k}{\Gamma, B \vdash \alpha} \cdots \frac{\Gamma, \Gamma_1 \vdash \alpha_1 \cdots \Gamma, \Gamma_k \vdash \alpha_k}{\Gamma \vdash \alpha}$$

Extending LJ_{\supset}

Imagine that we want to consider some formula *B* to be an axiom in LJ_{\neg} . We can simply put it on the L.H.S. However, this might not be ideal at times. What I have:

$$\frac{\Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \alpha_1 \qquad \Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3, \alpha_2 \supset \alpha_3 \vdash \beta}{\Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \beta}$$

What I probably want:

 $\label{eq:relation} \frac{\mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \alpha_1 \qquad \mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \alpha_2 \qquad \mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3, \alpha_3 \vdash \beta}{\mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \beta}$

"Synthetic inference rules to the rescue"

synthetic

add to LJ_{\neg}

$$\cdots \frac{\Gamma, B, \Gamma_1 \vdash \alpha_1 \cdots \Gamma, B, \Gamma_k \vdash \alpha_k}{\Gamma, B \vdash \alpha} \cdots \frac{\Gamma, \Gamma_1 \vdash \alpha_1 \cdots \Gamma, \Gamma_k \vdash \alpha_k}{\Gamma \vdash \alpha}$$

Extending LJ_{\supset}

Imagine that we want to consider some formula *B* to be an axiom in LJ_{\neg} . We can simply put it on the L.H.S. However, this might not be ideal at times. What I have:

$$\frac{\Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \alpha_1 \qquad \Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3, \alpha_2 \supset \alpha_3 \vdash \beta}{\Gamma, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \beta}$$

What I probably want:

 $\begin{tabular}{cccc} \hline \mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \alpha_1 & \mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \alpha_2 & \mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3, \alpha_3 \vdash \beta \\ \hline & \mathsf{\Gamma}, \alpha_1 \supset \alpha_2 \supset \alpha_3 \vdash \beta \\ \hline \end{tabular} \end{tabular}$

"Synthetic inference rules to the rescue"

synthetic

add to LJ_{\neg}

$$\cdots \frac{\Gamma, B, \Gamma_1 \vdash \alpha_1 \cdots \Gamma, B, \Gamma_k \vdash \alpha_k}{\Gamma, B \vdash \alpha} \cdots \frac{\Gamma, \Gamma_1 \vdash \alpha_1 \cdots \Gamma, \Gamma_k \vdash \alpha_k}{\Gamma \vdash \alpha}$$

Let $B_1 = \alpha_0 \supset \alpha_1, \ldots, B_n = \alpha_0 \supset \cdots \supset \alpha_n, \ldots$ and consider the extensions of LJ by B_1, \ldots, B_n .

What are the proofs of $\alpha_0 \vdash \alpha_n$?

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \cdots \quad \frac{\Gamma \vdash \alpha_0 \quad \cdots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n} \quad \cdots$$

There is a unique proof of exponential size.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, \alpha_0, \alpha_1 \vdash \alpha}{\Gamma, \alpha_0 \vdash \alpha} \quad \frac{\Gamma, \alpha_0, \alpha_1, \alpha_2 \vdash \alpha}{\Gamma, \alpha_0, \alpha_1 \vdash \alpha} \quad \cdots \quad \frac{\Gamma, \alpha_0, \dots, \alpha_{n-1}, \alpha_n \vdash \alpha}{\Gamma, \alpha_0, \dots, \alpha_{n-1} \vdash \alpha} \quad \cdots$$

Let $B_1 = \alpha_0 \supset \alpha_1, \ldots, B_n = \alpha_0 \supset \cdots \supset \alpha_n, \ldots$ and consider the extensions of LJ by B_1, \ldots, B_n .

What are the proofs of $\alpha_0 \vdash \alpha_n$?

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \cdots \quad \frac{\Gamma \vdash \alpha_0 \quad \cdots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n} \quad \cdots$$

There is a unique proof of exponential size.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, \alpha_0, \alpha_1 \vdash \alpha}{\Gamma, \alpha_0 \vdash \alpha} \quad \frac{\Gamma, \alpha_0, \alpha_1, \alpha_2 \vdash \alpha}{\Gamma, \alpha_0, \alpha_1 \vdash \alpha} \quad \cdots \quad \frac{\Gamma, \alpha_0, \dots, \alpha_{n-1}, \alpha_n \vdash \alpha}{\Gamma, \alpha_0, \dots, \alpha_{n-1} \vdash \alpha} \quad \cdots$$

Let $B_1 = \alpha_0 \supset \alpha_1, \ldots, B_n = \alpha_0 \supset \cdots \supset \alpha_n, \ldots$ and consider the extensions of LJ by B_1, \ldots, B_n .

What are the proofs of $\alpha_0 \vdash \alpha_n$?

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \dots \quad \frac{\Gamma \vdash \alpha_0 \quad \dots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n} \quad \dots$$

There is a unique proof of exponential size.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, \alpha_0, \alpha_1 \vdash \alpha}{\Gamma, \alpha_0, \mu} \quad \frac{\Gamma, \alpha_0, \alpha_1, \alpha_2 \vdash \alpha}{\Gamma, \alpha_0, \alpha_1 \vdash \alpha} \quad \cdots \quad \frac{\Gamma, \alpha_0, \dots, \alpha_{n-1}, \alpha_n \vdash \alpha}{\Gamma, \alpha_0, \dots, \alpha_{n-1} \vdash \alpha} \quad \cdots$$

Let $B_1 = \alpha_0 \supset \alpha_1, \ldots, B_n = \alpha_0 \supset \cdots \supset \alpha_n, \ldots$ and consider the extensions of LJ by B_1, \ldots, B_n .

What are the proofs of $\alpha_0 \vdash \alpha_n$?

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \cdots \quad \frac{\Gamma \vdash \alpha_0 \quad \cdots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n} \quad \cdots$$

There is a unique proof of exponential size.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, \alpha_0, \alpha_1 \vdash \alpha}{\Gamma, \alpha_0 \vdash \alpha} \quad \frac{\Gamma, \alpha_0, \alpha_1, \alpha_2 \vdash \alpha}{\Gamma, \alpha_0, \alpha_1 \vdash \alpha} \quad \cdots \quad \frac{\Gamma, \alpha_0, \dots, \alpha_{n-1}, \alpha_n \vdash \alpha}{\Gamma, \alpha_0, \dots, \alpha_{n-1} \vdash \alpha} \quad \cdot$$

Let $B_1 = \alpha_0 \supset \alpha_1, \ldots, B_n = \alpha_0 \supset \cdots \supset \alpha_n, \ldots$ and consider the extensions of LJ by B_1, \ldots, B_n .

What are the proofs of $\alpha_0 \vdash \alpha_n$?

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \dots \quad \frac{\Gamma \vdash \alpha_0 \quad \dots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n} \quad \dots$$

There is a unique proof of exponential size.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, \alpha_0, \alpha_1 \vdash \alpha}{\Gamma, \alpha_0 \vdash \alpha} \quad \frac{\Gamma, \alpha_0, \alpha_1, \alpha_2 \vdash \alpha}{\Gamma, \alpha_0, \alpha_1 \vdash \alpha} \quad \cdots \quad \frac{\Gamma, \alpha_0, \dots, \alpha_{n-1}, \alpha_n \vdash \alpha}{\Gamma, \alpha_0, \dots, \alpha_{n-1} \vdash \alpha} \quad \cdots$$

Let $B_1 = \alpha_0 \supset \alpha_1, \ldots, B_n = \alpha_0 \supset \cdots \supset \alpha_n, \ldots$ and consider the extensions of LJ by B_1, \ldots, B_n .

What are the proofs of $\alpha_0 \vdash \alpha_n$?

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \dots \quad \frac{\Gamma \vdash \alpha_0 \quad \dots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n} \quad \dots$$

There is a unique proof of exponential size.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, \alpha_0, \alpha_1 \vdash \alpha}{\Gamma, \alpha_0 \vdash \alpha} \quad \frac{\Gamma, \alpha_0, \alpha_1, \alpha_2 \vdash \alpha}{\Gamma, \alpha_0, \alpha_1 \vdash \alpha} \quad \cdots \quad \frac{\Gamma, \alpha_0, \dots, \alpha_{n-1}, \alpha_n \vdash \alpha}{\Gamma, \alpha_0, \dots, \alpha_{n-1} \vdash \alpha} \quad \cdots$$

Now let us annotate the inference rules in the previous example.

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \dots$$

$$\frac{\Gamma \vdash \alpha_0 \quad \cdots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n}$$

The unique proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

Now let us annotate the inference rules in the previous example.

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \dots$$

$$\frac{\Gamma \vdash \alpha_0 \quad \cdots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n}$$

The unique proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

Now let us annotate the inference rules in the previous example.

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash \alpha_0}{\Gamma \vdash \alpha_1} \quad \frac{\Gamma \vdash \alpha_0 \quad \Gamma \vdash \alpha_1}{\Gamma \vdash \alpha_2} \quad \dots$$

$$\frac{\Gamma \vdash \alpha_0 \quad \cdots \quad \Gamma \vdash \alpha_{n-1}}{\Gamma \vdash \alpha_n}$$

The unique proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

Now let us annotate the inference rules in the previous example.

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash t_0 : \alpha_0}{\Gamma \vdash B_1 t_0 : \alpha_1} \quad \frac{\Gamma \vdash t_0 : \alpha_0 \quad \Gamma \vdash t_1 : \alpha_1}{\Gamma \vdash B_2 t_0 t_1 : \alpha_2} \quad \cdots$$
$$\frac{\Gamma \vdash t_0 : \alpha_0 \quad \cdots \quad \Gamma \vdash t_{n-1} : \alpha_{n-1}}{\Gamma \vdash B_n t_0 \cdots t_{n-1} : \alpha_n}$$

The unique proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

Now let us annotate the inference rules in the previous example.

When α_i are all given the negative polarity, we have:

$$\frac{\Gamma \vdash t_0 : \alpha_0}{\Gamma \vdash B_1 t_0 : \alpha_1} \quad \frac{\Gamma \vdash t_0 : \alpha_0 \quad \Gamma \vdash t_1 : \alpha_1}{\Gamma \vdash B_2 t_0 t_1 : \alpha_2} \quad \dots$$
$$\frac{\Gamma \vdash t_0 : \alpha_0 \quad \dots \quad \Gamma \vdash t_{n-1} : \alpha_{n-1}}{\Gamma \vdash t_{n-1} : \alpha_{n-1}}$$

$$\Gamma \vdash B_n t_0 \cdots t_{n-1} : \alpha_n$$

The unique proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

$$B_4 x_0 (B_1 x_0) (B_2 x_0 (B_1 x_0)) (B_3 x_0 (B_1 x_0) (B_2 x_0 (B_1 x_0)))$$

Now let us annotate the inference rules in the previous example.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, \alpha_{0}, \alpha_{1} \vdash \alpha}{\Gamma, \alpha_{0} \vdash \alpha} \frac{\Gamma, \alpha_{0}, \alpha_{1}, \alpha_{2} \vdash \alpha}{\Gamma, \alpha_{0}, \alpha_{1} \vdash \alpha} \dots$$
$$\frac{\Gamma, \alpha_{0}, \dots, \alpha_{n-1}, \alpha_{n} \vdash \alpha}{\Gamma, \alpha_{0}, \dots, \alpha_{n-1} \vdash \alpha}$$

The shortest proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

Now let us annotate the inference rules in the previous example.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, x_0: \alpha_0, x_1: \alpha_1 \vdash t: \alpha}{\Gamma, x_0: \alpha_0 \vdash B_1 x_0(\lambda x_1.t): \alpha} \frac{\Gamma, x_0: \alpha_0, x_1: \alpha_1, x_2: \alpha_2 \vdash t: \alpha}{\Gamma, x_0: \alpha_0, x_1: \alpha_1 \vdash B_2 x_0 x_1(\lambda x_2.t): \alpha} \dots$$
$$\frac{\Gamma, x_0: \alpha_0, \dots, x_{n-1}: \alpha_{n-1}, x_n: \alpha_n \vdash t: \alpha}{\Gamma, x_0: \alpha_0, \dots, x_{n-1}: \alpha_{n-1} \vdash B_n x_0 \cdots x_{n-1}(\lambda x_n.t): \alpha}$$

The shortest proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

Now let us annotate the inference rules in the previous example.

When α_i are all given the positive polarity, we have:

$$\frac{\Gamma, x_0: \alpha_0, x_1: \alpha_1 \vdash t: \alpha}{\Gamma, x_0: \alpha_0 \vdash B_1 x_0(\lambda x_1.t): \alpha} \xrightarrow{\Gamma, x_0: \alpha_0, x_1: \alpha_1, x_2: \alpha_2 \vdash t: \alpha}{\Gamma, x_0: \alpha_0, x_1: \alpha_1 \vdash B_2 x_0 x_1(\lambda x_2.t): \alpha} \cdots$$

$$\frac{\Gamma, x_0: \alpha_0, \dots, x_{n-1}: \alpha_{n-1}, x_n: \alpha_n \vdash t: \alpha}{\Gamma, x_0: \alpha_0, \dots, x_{n-1}: \alpha_{n-1} \vdash B_n x_0 \cdots x_{n-1}(\lambda x_n.t): \alpha}$$

The shortest proof of $\alpha_0 \vdash \alpha_4$ is annotated by the term:

α is negative	lpha is positive
$\mathbf{x}: \alpha \in \Gamma$ $\overline{\Gamma \vdash \mathbf{x}: \alpha}$	$\alpha \in \Gamma {\Gamma \vdash \alpha}$
$\frac{\Gamma \vdash t : \alpha \Gamma \vdash u : \alpha}{\Gamma \vdash tu : \alpha}$	$\{\alpha,\alpha\} \subseteq {\sf \Gamma} \ \frac{{\sf \Gamma},\alpha \vdash \alpha}{{\sf \Gamma}\vdash \alpha}$
$\frac{\Gamma, \alpha \vdash \alpha}{\Gamma \vdash \alpha}$	$\frac{\Gamma, \alpha \vdash \alpha \Gamma, \alpha \vdash \alpha}{\Gamma \vdash \alpha}$
negative λ -terms	positive λ -terms

lpha is negative	lpha is positive	
$\mathbf{x}: \alpha \in \Gamma$ $\Gamma \vdash \mathbf{x}: \alpha$	$\alpha \in \Gamma {\Gamma \vdash \alpha}$	
$\frac{\Gamma \vdash t : \alpha \Gamma \vdash u : \alpha}{\Gamma \vdash tu : \alpha}$	$\{\alpha,\alpha\} \sqsubseteq \Gamma \ \frac{\Gamma,\alpha}{\Gamma \vdash}$	$rac{\alpha}{\alpha}$
$\frac{\Gamma, x : \alpha \vdash t : \alpha}{\Gamma \vdash \lambda x.t : \alpha}$	$\frac{\Gamma, \alpha \vdash \alpha \Gamma, \alpha}{\Gamma \vdash \alpha}$	$\vdash \alpha$
negative λ -terms	positive λ -terr	

lpha is negative	α is positive	
$\mathbf{x} : \alpha \in \Gamma$ $\overline{\Gamma \vdash \mathbf{x} : \alpha}$	$\mathbf{x}: \alpha \in \Gamma$ $\Gamma \vdash \mathbf{x}: \alpha$	$\overline{\alpha}$
$\frac{\Gamma \vdash t : \alpha \Gamma \vdash u : \alpha}{\Gamma \vdash tu : \alpha}$	$\{\alpha,\alpha\} \subseteq \Gamma \ \frac{\Gamma,\alpha \vdash}{\Gamma \vdash \alpha}$	$\frac{\alpha}{\alpha}$
$\frac{\Gamma, x : \alpha \vdash t : \alpha}{\Gamma \vdash \lambda x.t : \alpha}$	$\frac{\Gamma, \alpha \vdash \alpha \Gamma, \alpha \vdash}{\Gamma \vdash \alpha}$	α
negative λ -terms	positive λ -terms	

In LJF, we have a systematic way of transforming a positively polarized proof into a negatively polarized one.

This provides a way to turn a positive λ -term into its corresponding (negative) λ -term, which consists of unfolding all the shared structures in the positive λ -term:

$$\underline{x} = x \qquad \underline{t} [x \leftarrow yz] = \underline{t} \{x \leftarrow yz\} \qquad \underline{t} [x \leftarrow \lambda y.\underline{u}] = \underline{t} \{x \leftarrow \lambda y.\underline{u}\}$$

Terms correspond to cut-free proofs.

$$t[x/\underbrace{E\langle y\rangle}_{y[\cdots\leftarrow\cdots]}] = E\langle t\{x\leftarrow y\}\rangle$$

In LJF, we have a systematic way of transforming a positively polarized proof into a negatively polarized one.

This provides a way to turn a positive λ -term into its corresponding (negative) λ -term, which consists of unfolding all the shared structures in the positive λ -term:

$$\underline{x} = x \qquad \underline{t[x \leftarrow yz]} = \underline{t}\{x \leftarrow yz\} \qquad \underline{t[x \leftarrow \lambda y.u]} = \underline{t}\{x \leftarrow \lambda y.\underline{u}\}$$

Terms correspond to cut-free proofs.

$$t[x/\underbrace{E\langle y\rangle}_{y[\cdots\leftarrow\cdots]}] = E\langle t\{x\leftarrow y\}\rangle$$

In LJF, we have a systematic way of transforming a positively polarized proof into a negatively polarized one.

This provides a way to turn a positive λ -term into its corresponding (negative) λ -term, which consists of unfolding all the shared structures in the positive λ -term:

$$\underline{x} = x \qquad \underline{t[x \leftarrow yz]} = \underline{t}\{x \leftarrow yz\} \qquad \underline{t[x \leftarrow \lambda y.u]} = \underline{t}\{x \leftarrow \lambda y.\underline{u}\}$$

Terms correspond to cut-free proofs.

$$t[x/\underbrace{E\langle y\rangle}_{y[\cdots\leftarrow\cdots]}] = E\langle t\{x\leftarrow y\}\rangle$$

In LJF, we have a systematic way of transforming a positively polarized proof into a negatively polarized one.

This provides a way to turn a positive λ -term into its corresponding (negative) λ -term, which consists of unfolding all the shared structures in the positive λ -term:

$$\underline{x} = x \qquad \underline{t[x \leftarrow yz]} = \underline{t}\{x \leftarrow yz\} \qquad \underline{t[x \leftarrow \lambda y.u]} = \underline{t}\{x \leftarrow \lambda y.\underline{u}\}$$

Terms correspond to cut-free proofs.

$$t[x/\underbrace{E\langle y\rangle}_{y[\cdots\leftarrow\cdots]}] = E\langle t\{x\leftarrow y\}\rangle$$

Terms as Programs

$\lambda\text{-terms}$ with sharing

Positive λ -terms are λ -terms with sharing.

 λ -terms are given by:

 $t, u \coloneqq x \mid tu \mid \lambda x.t$

In CbV, there are many possible ways to restrict the shape of applications:

These restrictions are typical in a call-by-value setting, as substitutions of applications sometimes are simply blocked by the syntax:

$$xy \longrightarrow (zw)y$$

$\lambda\text{-terms}$ with sharing

Positive λ -terms are λ -terms with sharing.

 λ -terms are given by:

 $t, u \coloneqq x \mid tu \mid \lambda x.t$

In CbV, there are many possible ways to restrict the shape of applications:

These restrictions are typical in a call-by-value setting, as substitutions of applications sometimes are simply blocked by the syntax:

$$xy \longrightarrow (zw)y$$

$\lambda\text{-terms}$ with sharing

Positive λ -terms are λ -terms with sharing.

 $\lambda\text{-terms}$ with sharing/explicit substitutions are given by:

 $t, u \coloneqq x \mid tu \mid \lambda x.t \mid t[x \leftarrow u]$ (explicit substitution)

In CbV, there are many possible ways to restrict the shape of applications:

These restrictions are typical in a call-by-value setting, as substitutions of applications sometimes are simply blocked by the syntax:

$$xy \longrightarrow (zw)y$$

substituting zw for x
$\lambda\text{-terms}$ with sharing

Positive λ -terms are λ -terms with sharing.

 $\lambda\text{-terms}$ with sharing/explicit substitutions are given by:

 $t, u \coloneqq x \mid tu \mid \lambda x.t \mid t[x \leftarrow u]$ (explicit substitution)

In CbV, there are many possible ways to restrict the shape of applications:

These restrictions are typical in a call-by-value setting, as substitutions of applications sometimes are simply blocked by the syntax:

$$Xy \longrightarrow (zw)y$$

substituting zw for x

$\lambda\text{-terms}$ with sharing

Positive λ -terms are λ -terms with sharing.

 $\lambda\text{-terms}$ with sharing/explicit substitutions are given by:

 $t, u \coloneqq x \mid tu \mid \lambda x.t \mid t[x \leftarrow u]$ (explicit substitution)

In CbV, there are many possible ways to restrict the shape of applications:

These restrictions are typical in a call-by-value setting, as substitutions of applications sometimes are simply blocked by the syntax:

$$xy \longrightarrow (zw)y$$

substituting zw for x

Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of applications.

Now we have nine different forms of applications:

- the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

- Nested or flattened ESs: $t[x \leftarrow u[y \leftarrow r]]$ vs. $t[x \leftarrow u][y \leftarrow r]$
- Small-step vs. micro-step substitutions:

$$(xx)[x\leftarrow l] \rightarrow ||$$

vs.
$$(xx)[x\leftarrow l] \rightarrow (|x)[x\leftarrow l] \rightarrow (|l)[x\leftarrow l] \rightarrow ||$$

• Variables as values?

Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of applications.

Now we have nine different forms of applications:

- the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

- Nested or flattened ESs: $t[x \leftarrow u[y \leftarrow r]]$ vs. $t[x \leftarrow u][y \leftarrow r]$
- Small-step vs. micro-step substitutions:

$$(xx)[x\leftarrow l] \rightarrow ||$$

vs.
$$(xx)[x\leftarrow l] \rightarrow (|x)[x\leftarrow l] \rightarrow (|l)[x\leftarrow l] \rightarrow ||$$

• Variables as values?

Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of applications.

Now we have nine different forms of applications:

- the general form tu
- eight crumbled forms vu, xu, tv', vv', xv', ty, vy, and xy.

Some more ways to classify/design call-by-value calculi with ESs.

- Nested or flattened ESs: $t[x \leftarrow u[y \leftarrow r]]$ vs. $t[x \leftarrow u][y \leftarrow r]$
- Small-step vs. micro-step substitutions:

$$(xx)[x \leftarrow I] \rightarrow II$$

vs.
$$(xx)[x \leftarrow I] \rightarrow (Ix)[x \leftarrow I] \rightarrow (II)[x \leftarrow I] \rightarrow II$$

• Variables as values?

In micro-step settings, one has the following substitution rule:

$$C\langle x\rangle[x{\leftarrow}v] \to C\langle v\rangle[x{\leftarrow}v]$$

What about making a substitution only when it contributes to the creation of some β -redexes?

Consider

$$(yx)[x \leftarrow I] \rightarrow (yI)[x \leftarrow I]$$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x \leftarrow I] \rightarrow (Iy)[x \leftarrow I]$ is useful
- $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$C\langle x\rangle[x\leftarrow v]\to C\langle v\rangle[x\leftarrow v]$$

What about making a substitution only when it contributes to the creation of some β -redexes?

Consider

$$(yx)[x \leftarrow I] \rightarrow (yI)[x \leftarrow I]$$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x \leftarrow I] \rightarrow (Iy)[x \leftarrow I]$ is useful
- $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$C\langle x\rangle[x\leftarrow v]\to C\langle v\rangle[x\leftarrow v]$$

What about making a substitution only when it contributes to the creation of some β -redexes?

Consider

$(yx)[x \leftarrow \mathsf{I}] \rightarrow (y\mathsf{I})[x \leftarrow \mathsf{I}]$

There is no β -redex created after this substitution, and there won't be any β -redex created in the future \rightarrow non-useful

- $(xy)[x \leftarrow I] \rightarrow (Iy)[x \leftarrow I]$ is useful
- $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$C\langle x\rangle[x\leftarrow v]\to C\langle v\rangle[x\leftarrow v]$$

What about making a substitution only when it contributes to the creation of some β -redexes?

Consider

$$(yx)[x \leftarrow I] \rightarrow (yI)[x \leftarrow I]$$

There is no $\beta\text{-redex}$ created after this substitution, and there won't be any $\beta\text{-redex}$ created in the future \rightarrow non-useful

- $(xy)[x \leftarrow I] \rightarrow (Iy)[x \leftarrow I]$ is useful
- $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$C\langle x\rangle[x\leftarrow v]\to C\langle v\rangle[x\leftarrow v]$$

What about making a substitution only when it contributes to the creation of some β -redexes?

Consider

$$(yx)[x \leftarrow I] \rightarrow (yI)[x \leftarrow I]$$

There is no $\beta\text{-redex}$ created after this substitution, and there won't be any $\beta\text{-redex}$ created in the future \rightarrow non-useful

- $(xy)[x \leftarrow I] \rightarrow (Iy)[x \leftarrow I]$ is useful
- $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful

In micro-step settings, one has the following substitution rule:

$$C\langle x\rangle[x\leftarrow v]\to C\langle v\rangle[x\leftarrow v]$$

What about making a substitution only when it contributes to the creation of some β -redexes?

Consider

$$(yx)[x \leftarrow I] \rightarrow (yI)[x \leftarrow I]$$

There is no $\beta\text{-redex}$ created after this substitution, and there won't be any $\beta\text{-redex}$ created in the future \rightarrow non-useful

- $(xy)[x \leftarrow I] \rightarrow (Iy)[x \leftarrow I]$ is (directly) useful
- $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful

- Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow I[x \leftarrow I]y$ is useful
- Indirect usefulness:

 (xy)[x←z][z←l] → (xy)[x←l][z←l]
 → It is useful!
- Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow l]$$

$$\rightarrow \qquad (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

$$\rightarrow^* \qquad (x_0t)[x_0\leftarrow l][x_1\leftarrow l]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

• Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow \underline{I}[x \leftarrow I]\underline{y}$ is useful

• Indirect usefulness:

$$(xy)[x \leftarrow z][z \leftarrow l] \rightarrow (xy)[x \leftarrow l][z \leftarrow l]$$

 \rightarrow It is useful!

• Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow l]$$

$$\rightarrow \qquad (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

$$\rightarrow^* \qquad (x_0t)[x_0\leftarrow l][x_1\leftarrow l]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

- Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow I[x \leftarrow I]y$ is useful
- Indirect usefulness:
 (xy)[x←z][z←l] → (xy)[x←l][z←l] is useful or not?
 → It is useful!
- Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow l]$$

$$\rightarrow (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

$$\rightarrow^* (x_0t)[x_0\leftarrow l][x_1\leftarrow l]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

- Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow I[x \leftarrow I]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow l] \rightarrow (xy)[x \leftarrow l][z \leftarrow l] \rightarrow (ly)[x \leftarrow l][z \leftarrow l]$ \rightarrow It is useful!
- Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow l]$$

$$\rightarrow \qquad (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

$$\rightarrow^* \qquad (x_0t)[x_0\leftarrow l][x_1\leftarrow l]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

- Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow I[x \leftarrow I]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow l] \rightarrow (xy)[x \leftarrow l][z \leftarrow l] \rightarrow (ly)[x \leftarrow l][z \leftarrow l]$ \Rightarrow It is useful!
- Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow l]$$

$$\rightarrow (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

$$\rightarrow^* (x_0t)[x_0\leftarrow l][x_1\leftarrow l]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

- Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow I[x \leftarrow I]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow I] \rightarrow (xy)[x \leftarrow I][z \leftarrow I] \rightarrow (Iy)[x \leftarrow I][z \leftarrow I]$ \Rightarrow It is (indirectly) useful!
- Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow l]$$

$$\rightarrow (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

$$\rightarrow^* (x_0t)[x_0\leftarrow l][x_1\leftarrow l]\cdots[x_{k-1}\leftarrow l][x_k\leftarrow l]$$

- Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow I[x \leftarrow I]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow l] \rightarrow (xy)[x \leftarrow l][z \leftarrow l] \rightarrow (ly)[x \leftarrow l][z \leftarrow l]$ \rightarrow It is (indirectly) useful!
- Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow I]$$

$$\rightarrow (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow I][x_k\leftarrow I]$$

$$\rightarrow^* (x_0t)[x_0\leftarrow I][x_1\leftarrow I]\cdots[x_{k-1}\leftarrow I][x_k\leftarrow I]$$

- Contextual closure: $x[x \leftarrow I] \rightarrow I[x \leftarrow I]$ is non-useful while $x[x \leftarrow I]y \rightarrow I[x \leftarrow I]y$ is useful
- Indirect usefulness: $(xy)[x \leftarrow z][z \leftarrow l] \rightarrow (xy)[x \leftarrow l][z \leftarrow l] \rightarrow (ly)[x \leftarrow l][z \leftarrow l]$ \rightarrow It is (indirectly) useful!
- Renaming chains:

$$(x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow x_k][x_k\leftarrow I]$$

$$\rightarrow (x_0t)[x_0\leftarrow x_1][x_1\leftarrow x_2]\cdots[x_{k-1}\leftarrow I][x_k\leftarrow I]$$

$$\rightarrow^* (x_0t)[x_0\leftarrow I][x_1\leftarrow I]\cdots[x_{k-1}\leftarrow I][x_k\leftarrow I]$$

$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

 $\begin{aligned} & x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ & \rightarrow_{oe_{+}} \quad x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ & x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{aligned}$

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{array}{l} x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_{+}} \quad x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ x[x \leftarrow w_{1}'w_{1}'][w_{1}' \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{array}$$

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{aligned} & x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \Rightarrow_{oe_{+}} & x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \Rightarrow_{om_{+}} & x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{aligned}$$

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{aligned} & x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_{+}} & x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{om_{+}} & x[x \leftarrow w'_{1}w'_{1}][w'_{1}(\leftarrow z'z')[z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{aligned}$$

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{array}{l} x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_{+}} \quad x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{om_{+}} \quad x[x \leftarrow w'_{1}w'_{1}][w'_{1}(\leftarrow z'z')[z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{array}$$

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{array}{l} x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_{+}} \quad x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{om_{+}} \quad x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{array}$$

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{array}{l} x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_{+}} & x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oeme_{+}} & x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{array}$$

Explicit positive λ -calculus λ_{xpos}

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{array}{l} x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_{+}} \quad x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{om_{+}} \quad x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{array}$$

Explicit positive λ -calculus λ_{xpos}

$$t, u \quad \coloneqq \quad x \mid t[x \leftarrow yz] \mid t[x \leftarrow \lambda y.u] \mid t[x \leftarrow (\lambda y.u)z]$$

- ESs are flattened.
- Restricted form of explicit substitutions:
 - 1. Minimalistic application yz
 - 2. No ES for variables: variables are not values and renaming chains do not exist!

Example of reduction:

$$\begin{array}{rcl} & x[x \leftarrow yy][y \leftarrow zz'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{oe_{+}} & x[x \leftarrow yy][y \leftarrow (\lambda w.w'[w' \leftarrow ww])z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \\ \rightarrow_{om_{+}} & x[x \leftarrow w'_{1}w'_{1}][w'_{1} \leftarrow z'z'][z \leftarrow \lambda w.w'[w' \leftarrow ww]] \end{array}$$

 λ_{ovsc} (= Useful λ_{ovsc} + Non-useful)

 λ_{ovsc} (= Useful λ_{ovsc} + Non-useful)

t

 λ_{ovsc} (= Useful λ_{ovsc} + Non-useful)

и

ť

$$\lambda_{ ext{ovsc}}$$
 (= Useful $\lambda_{ ext{ovsc}}$ + Non-useful)

Focusing

Term representation

non-useful λ_{vsc}

non-useful λ_{vsc}

Future work

- Towards a better understanding of polarities (of atomic formulas) in full linear logic.
- Efficient implementation of meta-level renamings involved in $\lambda_{\rm pos}.$ We expect this to be doable in an efficient way via an appropriate abstract machine.
- λ_{pos} for call-by-need evaluation.

Thank you for listening!