Proofs as Terms and Terms as Programs, Positively

Jui-Hsuan Wu

LIX, Ecole Polytechnique & Inria Saclay

LoVe seminar, LIPN

16 January 2025

1/29

Outline

Introduction

Proofs as Terms

Terms as Programs

2/29

Introduction

3/29

Syntax is everywhere

4/29

Syntax is everywhere

We live in a world full of syntactic structures.

4/29

Syntax is everywhere

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural
languages, etc.

4/29

Syntax is everywhere

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural
languages, etc.

Handling operations on terms can be tricky, especially with bindings.
® substitution
® equality checking
® evaluation

® sharing

4/29

Syntax is everywhere

We live in a world full of syntactic structures.

Terms (or expressions) are everywhere.

In programming languages, formal proofs, mathematical proofs, natural
languages, etc.

Handling operations on terms can be tricky, especially with bindings.

substitution
equality checking
evaluation

sharing

Having a meta-theory is important for further studies.

4/29

Proof theory and term representation

5/29

Proof theory and term representation

Need a highly prinicipled and mathematically sound meta-theory
< (structural) proof theory might help

5/29

Proof theory and term representation

Need a highly prinicipled and mathematically sound meta-theory
< (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by
proofs.

5/29

Proof theory and term representation

Need a highly prinicipled and mathematically sound meta-theory
< (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by
proofs.

In addition to the structure of terms,
other operations can sometimes be mimicked by operations on proofs.

5/29

Proof theory and term representation

Need a highly prinicipled and mathematically sound meta-theory
< (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by
proofs.

In addition to the structure of terms,

other operations can sometimes be mimicked by operations on proofs.

— Curry-Howard correspondence.

5/29

Proof theory and term representation

Need a highly prinicipled and mathematically sound meta-theory
< (structural) proof theory might help

Starting from a given proof system, we can obtain a term representation by
proofs.

In addition to the structure of terms,
other operations can sometimes be mimicked by operations on proofs.

— Curry-Howard correspondence.

Sometimes, operations on terms are not provided by proof theory for free, but
they can be inspired by some proof-theoretic observations.

5/29

Proofs as Terms

6/29

Gentzen's sequent calculus

We start by looking at the implicational fragment LJ5 of Gentzen's LJ.

Formulas are made of atoms «, 3, ..., and implications o.
; LB,B+-C r-B F,B»—CC
t
rB-B FBrC e u
I'»—Bl r7Bz}—B F,Bln—BQ

>R

o)
F,BlangB r}—BlDB2

Cut-elimination: the cut rule is not needed in terms of provability
— subformula property

7/29

Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

.
B,B+C

MB+C
Is this contraction really needed?

8/29

Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

.
B,B+C

MB+C
Is this contraction really needed?

2. Lack of canonicity. Consider the following proofs:

I I
B+ B: Bl,Bz F B
oL

R |
Bi>B:+ B> B, and B> By, Bi+ B
T Temr T TE
BioB,+-B1>B;
Are they equivalent?

8/29

Problems with sequent calculus

There are, however, some problems with this proof system:

1. Non-controlled contraction. Consider the proof

.
B,B+C

MB+C
Is this contraction really needed?

2. Lack of canonicity. Consider the following proofs:

/ /
| B+ B: Bl,Bz’—B2DL
Bi>B:+ B> B, and B> By, Bi+ B
i Rl R
BioB,+-B1>B;

Are they equivalent?

These two problems become even more visible when one considers proof search.

" Flexibility in proof construction = Non-determinism in proof search”

8/29

Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a
corresponding introduction rule.

I_781:>le— [_7813827 - C L
o]
I',Blng, ’—CC
F,Blngr—C

9/29

Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a
corresponding introduction rule.

I_751:>le— r7BlDBz7 - C L
o]
I',Blng, ’—CC
F,Blszr—C

2. Atomic initial rule & invertibility of o R.

® We only need the initial rule for atoms: |, lat
® The rule
I', Bl = Bz
—— >
'-B1o2B;

is invertible: when doing proof-search, we can always apply > R without
losing provability.

9/29

Solutions to the problems

1. Controlled contraction: a contraction should be directly followed by a
corresponding introduction rule.

I_751:>le— r7BlDBz7 - C L
o]
I',Blng, ’—CC
F,Blszr—C

2. Atomic initial rule & invertibility of o R.

® We only need the initial rule for atoms: |, lat
® The rule
I', Bl = Bz
—— >
'-B1o2B;

is invertible: when doing proof-search, we can always apply > R without
losing provability.

These considerations eventually led us to the focused proof system LJF-.

9/29

Focusing, intuitively

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve
proof search in linear logic.

10/29

Focusing, intuitively

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve
proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

10/29

Focusing, intuitively

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve
proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an
invertible rule is available, one can simply apply it!

10/29

Focusing, intuitively

Focusing was first introduced by Jean-Marc Andreoli as a technique to improve
proof search in linear logic.

The idea is to classify inference rules based on the notion of invertibility.

The notion of invertibility provides a proof-search heuristic: whenever an
invertible rule is available, one can simply apply it!

This eventually leads to focusing:
® some invertible rules are available - apply them (negative phase)

® only non-invertible rules are available — choose one formula and focus on
it (and its subformulas) (phase)

10/29

Structure of focused proofs

Proofs obtained by focusing (also called focused proofs) are cut-free and have

an alternating phase structure:

borders

V4

} large-scale rule

} (= synthetic inference rule)

11/29

Structure of focused proofs

Proofs obtained by focusing (also called focused proofs) are cut-free and have
an alternating phase structure:

large-scale rule

borders
(= synthetic inference rule)

Proofs can be seen as built with some larger units (phases, synthetic
connectives, synthetic inference rules, etc) rather than tiny inference rules.

11/29

Focused proof system LJF,

In LJF5, formulas are polarized: the system is equipped with a polarization
0:ATOM — {—, +}.

To make phases explicit, we add arrows (f, |/) to sequents:
* Negative phase (for invertible rules) I+ B)
® Positive phase (for non-invertible rules) I'| B-a or T+ B

® Border: sequents with no arrows [— «

Rules:
/ 5(04):— B ——— // (S(O!)=+ —_— IR r’N NI—OL , \
Nara MNara L N-a
r r B+a r=N
sys T p o TEe g sgy-s DT g " g,
M- o MN-af rNgra r=nN
rFBl r BQFO[r,BlkB2ﬂ

oL — 5 R
r BlDBQD—Oc Fn—BlzBQﬂ

12/29

Two-phase structure of LJF- proofs

/R /l

Fyra rylgrp
)

Nyla>Brp

Myr8
r,

YEB1 s,
FMy=61 R
TeoSat
Fy2 81 R
Fr-~v-p Fréré

Fl(y=p)26r6
a,adfB,(y>2B)2d6+-4

L
D,

R
I

oL

/

13/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

14 /29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MaspBry

14/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MaspBla>fBry

NaspBry

14/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MNas>pra MaspBl By
MaspBla>Bry

Naspry

14/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MNaspBraf
MNas>fra MaspBl By
MaspBla>Bry

Naspry

14/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?
MNasfra
MNaspBraf
Fas>fral FasBBry
MaspBla>Bry

Naspry

14/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?
MNasfra
MNaspBraf
Nasfral | TasBlBry
MaspBla>Bry

Naspry

14/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MNasfra

v=8

MaspBry
So we have the synthetic inference rule
Nasfra

VZBFADBFW

14/29

Synthetic inference rules in LJF

The synthetic inference rule for a formula B tells how B can be used from a
proof-search point of view!

Example:
How can the formula o > 8 on the L.H.S. be used (both « and 3 are negative)?

MNasfra

v=8

MaspBry
So we have the synthetic inference rule
Nasfra

v=8 MaspBry

This depends on the polarization chosen!

14/29

Extending LJ5

Imagine that we want to consider some formula B to be an axiom in LJ-.

We can simply put it on the L.H.S. However, this might not be ideal at times.

15/29

Extending LJ5

Imagine that we want to consider some formula B to be an axiom in LJ-.

We can simply put it on the L.H.S. However, this might not be ideal at times.

What | have:
MNaidoaxd>as+ o MNaroaxoa3,a0>a3+f

r,OélDOJQDOBI—,@

What | probably want:

MNoaioaoaz oy MNaioaz>as - az Mai>azd>as,as+ B

MNaioazoas+ B

15/29

Extending LJ5

Imagine that we want to consider some formula B to be an axiom in LJ-.

We can simply put it on the L.H.S. However, this might not be ideal at times.

What | have:
MNaioazoasrar lNaioaxdaz,ccda3+

r,OélDOJQDOBI—,@

What | probably want:

MNoaioaoaz oy MNaioaz>as - az Mai>azd>as,as+ B

MNaioazoas+ B

" Synthetic inference rules to the rescue”

synthetic add to LJs

r,B,rlFOll r,B,rkFak Mo F, M=o

r7B'_a e

15/29

What do proofs look like?

Let By =ao>a1,...,Bs=aop> 2 ap,... and consider the extensions of LJ by
Bi,...,Bn.

16/29

What do proofs look like?

Let By =ao>a1,...,Bs=aop> 2 ap,... and consider the extensions of LJ by
Bi,...,Bn.

What are the proofs of ag + ay?

16/29

What do proofs look like?

Let By =ao>a1,...,Bs=aop> 2 ap,... and consider the extensions of LJ by
Bi,...,Bn.

What are the proofs of ag + ay?

When «; are all given the negative polarity, we have:

MN-ay TFay Trao MN-ao - Trap
r>—a1 ri—az I'»—an

16/29

What do proofs look like?

Let By =ao>a1,...,Bs=aop> 2 ap,... and consider the extensions of LJ by
Bi,...,Bn.

What are the proofs of ag + ay?

When «; are all given the negative polarity, we have:

MN-ay TFay Trao MN-ao - Trap

r>—a1 ri—az I'»—an

There is a unique proof of exponential size.

16/29

What do proofs look like?

Let By =ao>a1,...,Bs=aop> 2 ap,... and consider the extensions of LJ by
Bi,...,Bn.

What are the proofs of ag + ay?

When «; are all given the negative polarity, we have:

MN-ay TFay Trao MN-ao - Trap
r>—a1 ri—az I'»—an

There is a unique proof of exponential size.

When «; are all given the polarity, we have:
Maj,ar-a N ag,0n,00Fa I ag,...,0p-1,0n -
Mook« I oo, a1 -« M ag,...,an-1+«

16/29

What do proofs look like?

Let By =ao>a1,...,Bs=aop> 2 ap,... and consider the extensions of LJ by
Bi,...,Bn.

What are the proofs of ag + ay?

When «; are all given the negative polarity, we have:

MN-ay TFay Trao MN-ao - Trap
r>—a1 ri—az I'»—an

There is a unique proof of exponential size.

When «; are all given the polarity, we have:
Maj,ar-a N ag,0n,00Fa I ag,...,0p-1,0n -
Mook« I oo, a1 -« M ag,...,an-1+«

There is a shortest proof of linear size.

16/29

Annotate rules and proofs

17/29

Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

17/29

Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the negative polarity, we have:

r}—ao Fn—ao I'n—a1

Fkal Fha2

M ao - apo1

M- a,

17/29

Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the negative polarity, we have:

[+~ 1t: oo - t: oo Ml-ti:on
[+ Bito: o1 [+ Bototy : o

MN=to: oo M tho1:ane

[+ Bpto-+th-1: ap

17/29

Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the negative polarity, we have:

[+~ 1t: oo - t: oo Ml-ti:on

[+ Bito: o1 [+ Bototy : o

MN=to: oo M tho1:ane

I+ Bptoth-1:n
The unique proof of ap + a4 is annotated by the term:

Bs xo (B1 x0) (B2 x0 (B1 x0))
(B3 x0 (B1 x0) (B2 x0 (B1 x0)))

17/29

Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the positive polarity, we have:

MNa,ar+-a o, 1,00 -«

Moo+« I a1+«
M ao,...,an-1,00 -«
I ag,...,0n-1+«

17/29

Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the positive polarity, we have:

Mxo:ao,xitaarFt:a Mxo:ao,x1:a1,x:akFt:a

Moxo:ao - Bixo(Axi.t) e Tyxo:ap,x1:oq - Baxoxi(Axe.t)

(X0 Q0 ooy Xn1 8 Qpe1, Xn i Qp T2 @0

M X0 @y ..oy Xn—1: Qo1 F Bpxo-Xp-1(Axn.t) t

17/29

Annotate rules and proofs

Now let us annotate the inference rules in the previous example.

When «; are all given the positive polarity, we have:

Mxo:ao,xitaarFt:a Mxo:ao,x1:a1,x:akFt:a

Moxo:ao - Bixo(Axi.t) e Tyxo:ap,x1:oq - Baxoxi(Axe.t)

(X0 Q0 ooy Xn1 8 Qpe1, Xn i Qp T2 @0

[, X0 @Oy« vy Xno1 t Qpo1 F BpxoXno1 (Axn 1) T

The shortest proof of ag - aus is annotated by the term:

(B1 xo (Axa.
(B2 xo x1 (Ax2.
(Bs xo x1 2 (Ax3.
(Ba xo x1 %2 x3 (Axa. xa))))))))

17/29

Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

acel

M-«

lN-a TN«

MN-a

Mok«

oY

ais
ael
M«
Mar
{oz,a}EFia
M-«

Nara [§Nara

M-«

18/29

Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

x:ael
lN-a TN«
MN-a

Mok«

oY

MN-x:«

ais
ael
M«
Mar
{oz,a}EFia
M-«

Nara [§Nara

M-«

18/29

Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

x:a€el ——
MN-x:«

| I " lFu:a

M-tu:a

Mok«

oY

ais
ael
M-«
Mar
{oe,oe}EFia
M-«

Nara [Nara

M-«

18/29

Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the

two uniform polarizations.

a is negative

x:a€el ——
MN-x:«

| I " lFu:a

M-tu:a

Mx:art:«

M- x.t:«

ais
ael
M-«
Mar
{oe,oe}EFia
M-«

Nara [Nara

M-«

18/29

Two presentations of untyped A-terms

By considering the two axioms a2 &>« and (a2 &) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.

a is negative ais
x:a€el —— x:ael ——
MN-x:« MN-x:«
lN-t:a Tru:a MNara
{a,aycl ———
M-tu:a [«
Mx:art:a MNoara Tora

M- x.t:« M-«

18/29

Two presentations of untyped A-terms

By considering the two axioms a > @ > a and (@ > «) o v, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.

« is negative ais
x:ael — x:oel ——
MN-x:a MN-x:a
lN-t:a Tru:a Mx:art:«a
{y:ia,z:a} sl —————
MN-tu:a I+ t[x<yz]: o
Mx:art:a Nara TNara

M- Ax.t:a MN-o

18/29

Two presentations of untyped A-terms

By considering the two axioms a2 @ >« and (@ 2 @) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.

a is negative o is
x:oel —— x:ael ——
N-x:a M-x:a
] : Mx:ar-t:a
N-t:a Tru:a {y:az:ajer 227
M-tu:a - tx<yz]:a
Mx:art:a Ny:aru:a [Mx:art:a

MN-Xx.t:a M- tx<Ay.u]:a

18/29

Two presentations of untyped A-terms

By considering the two axioms a2 @ >« and (@ 2 @) o «, and by annotating
the rules, we obtain two different presentations of untyped A-terms by using the
two uniform polarizations.

a is negative ois
x:o€el —— x:ael ——
N-x:a M-x:a
] : Mx:art:a
N-t:a Tru:a {y:az:ajer 227
M-tu:a - tx<yz]:a
Mx:art:a Ny:aru:a [Mx:art:a
MN-Xx.t:a M- tix<Ay.u]:a

negative \-terms positive \-terms

18/29

Unfolding and substitution

In LJF, we have a systematic way of transforming a positively polarized proof
into a negatively polarized one.

19/29

Unfolding and substitution

In LJF, we have a systematic way of transforming a positively polarized proof
into a negatively polarized one.

This provides a way to turn a positive A-term into its corresponding (negative)
A-term, which consists of unfolding all the shared structures in the positive
A-term:

x=x tlxeyz=tixeyzh txedya] = Hxedy)

19/29

Unfolding and substitution

In LJF, we have a systematic way of transforming a positively polarized proof
into a negatively polarized one.

This provides a way to turn a positive A-term into its corresponding (negative)
A-term, which consists of unfolding all the shared structures in the positive
A-term:

x=x tlxeyz=tixeyzh txedya] = Hxedy)

Terms correspond to cut-free proofs.

19/29

Unfolding and substitution

In LJF, we have a systematic way of transforming a positively polarized proof
into a negatively polarized one.

This provides a way to turn a positive A-term into its corresponding (negative)
A-term, which consists of unfolding all the shared structures in the positive
A-term:

x=x tlxeyz=tixeyzh txedya] = Hxedy)

Terms correspond to cut-free proofs.

Introducing a cut between two cut-free proofs and applying cut-elimination
provides a natural definition of (meta-level) substitution. For positive A-terms,

tix/ E(y) 1=E(t{x=y})

19/29

Terms as Programs

20/29

A-terms with sharing

Positive A-terms are A-terms with sharing.

21/29

A-terms with sharing
Positive A-terms are A-terms with sharing.

A-terms are given by:
t,us= x| tu| Ax.t

21/29

A-terms with sharing
Positive A-terms are A-terms with sharing.

A-terms with sharing/explicit substitutions are given by:

t,u = x| tu| Ax.t| t[x<u] (explicit substitution)

21/29

A-terms with sharing
Positive A-terms are A-terms with sharing.

A-terms with sharing/explicit substitutions are given by:

t,u = x| tu| Ax.t| t[x<u] (explicit substitution)

In CbV, there are many possible ways to restrict the shape of applications:

[-] value as the left subterm of
([uDDx[t]] an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

I-1 (xy)[x<[t]][y<[u]] values as both subterms ---

21/29

A-terms with sharing
Positive A-terms are A-terms with sharing.

A-terms with sharing/explicit substitutions are given by:

t,u = x| tu| Ax.t| t[x<u] (explicit substitution)

In CbV, there are many possible ways to restrict the shape of applications:

[-] value as the left subterm of
([uDDx[t]] an application

tu —— > ([t]x)[x<[u]] value as the right subterm -

I-1 (xy)[x<[t]][y<[u]] values as both subterms ---

These restrictions are typical in a call-by-value setting, as substitutions of
applications sometimes are simply blocked by the syntax:

Xy (zw)y

substituting zw for x

21/29

Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications.

22/29

Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications.

Now we have nine different forms of applications:
® the general form tu

® eight forms vu, xu, tv/, w’, xv', ty, vy, and xy.

22/29

Classification/design of call-by-value calculi with ESs

It is actually possible to have only variables as immediate sub-terms of
applications.
Now we have nine different forms of applications:

® the general form tu

® eight forms vu, xu, tv/, w’, xv', ty, vy, and xy.
Some more ways to classify/design call-by-value calculi with ESs.
® Nested or flattened ESs: t[x«ul[y<r]] vs. t[x«u][y«<r]

® Small-step vs. micro-step substitutions:

() [x<1] =1
VS,
() [x<1] = (Ix)[x<1] = (IN[x<I] =1

® Variables as values?

22/29

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

Cl)[xev] = C(v)[xv]

23/29

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C(x)[x<v] = C{v)[x<V]

What about making a substitution only when it of
some (3-redexes?

23/29

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:
C(x)[x<v] = C{v)[x<V]

What about making a substitution only when it of
some (3-redexes?

Consider
() [x1] = (yD)[x1]

23/29

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

Cx)[xev] > C(v)[xv]
What about making a substitution only when it of
some (3-redexes?

Consider
() [x1] = (yD)[x1]

There is no B-redex created after this substitution, and there won’t be any
[-redex created in the future — non-useful

23/29

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

Cx)[xev] > C(v)[xv]
What about making a substitution only when it of
some (3-redexes?

Consider
() [x1] = (yD)[x1]

There is no B-redex created after this substitution, and there won’t be any
[-redex created in the future — non-useful

Some more examples:

* (xy)[x<1] = (ly)[x<I1] is
® x[x«<I] = I[x«I] is non-useful

23/29

Useful substitutions v.s. non-useful substitutions

In micro-step settings, one has the following substitution rule:

Cx)[xev] > C(v)[xv]
What about making a substitution only when it of
some (3-redexes?

Consider
() [x1] = (yD)[x1]

There is no B-redex created after this substitution, and there won’t be any
[-redex created in the future — non-useful

Some more examples:

* (xy)[x<1] = (ly)[x<I1] is
® x[x«<I] = I[x«I] is non-useful

23/29

Usefulness: subtleties

24/29

Usefulness: subtleties

® Contextual closure:
x[x<1] = I[x«<I] is non-useful
while x[x<I]y — I[x«<I]y is useful

24/29

Usefulness: subtleties

® Contextual closure:
x[x<1] = I[x«<I] is non-useful
while x[x<I]y — I[x«<I]y is useful

® Indirect usefulness:
(xy)[x<z][z<]] = (xy)[x<I][z<]] is useful or not?

24 /29

Usefulness: subtleties

® Contextual closure:
x[x<1] = I[x«<I] is non-useful
while x[x<I]y — I[x«<I]y is useful

® |ndirect usefulness:
(xy)[xez][ze1] = (xy) [xl][z1] = (ly) [x<1][z<1]

24 /29

Usefulness: subtleties

® Contextual closure:
x[x<1] = I[x«<I] is non-useful
while x[x<I]y — I[x«<I]y is useful

® |ndirect usefulness:
(xy)[xez][ze1] = (xy) [x][z1] = (ly) [x<1][z<1]
< It is useful!

24/29

Usefulness: subtleties

® Contextual closure:
x[x<1] = I[x«<I] is non-useful
while x[x<I]y — I[x«<I]y is useful

® |ndirect usefulness:
(xy)[xez][ze1] = (xy) [x][z1] = (ly) [x<1][z<1]
< It is (indirectly) useful!

24/29

Usefulness: subtleties

® Contextual closure:
x[x<1] = I[x«<I] is non-useful
while x[x<I]y — I[x«<I]y is useful

® |ndirect usefulness:

(xy)xez][z<1] > Co) [x=I][z<1] = (Iy)[x<1][z<]]
< It is (indirectly) useful!

® Renaming chains:

(xot) [xoexa] [xaexa] -+ [xe-1 X] [x1]

- (xot)oex]xaexe][] [xi]
=" (ot) o] act] D] [xel]

24 /29

Usefulness: subtleties

® Contextual closure:
x[x<1] = I[x«<I] is non-useful
while x[x<I]y — I[x«<I]y is useful

® |ndirect usefulness:

(xy)xez][z<1] > Co) [x=I][z<1] = (Iy)[x<1][z<]]
< It is (indirectly) useful!

® Renaming chains:

(xot) [xoexa] [xaexa] -+ [xe-1 X] [x1]
- (xot)oex]xaexe][] [xi]

=" (ot) o] act] D] [xel]

Positive A-calculus has no such issues!

24/29

Positive A-calculus Apos

t,u = x| t[xeyz] | t{x<Ay.u]

25 /29

Positive A-calculus Apos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:
1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not
exist

25 /29

Positive A-calculus Apos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not

exist!

Example of reduction:

x[xeyy]ly<zZ' |[z=Aw.w' [w' <ww]]

25 /29

Positive A-calculus Apos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not

exist!

Example of reduction:

x[x<yy] [yezz'] [zeAw.w'[w' —ww]]

25 /29

Positive A-calculus Apos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:
1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not
exist

Example of reduction:

x[xeyy]ly<zZ'|[z=Aw.w' [w' <ww]]
e, X[xeyy]lyc-(OAw.w [w enww])Z'][z Aw.w' [w —ww]]

25 /29

Positive A-calculus Apos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not

exist!

Example of reduction:

x[xeyy]ly<zZ' |[z=Aw.w' [w' <ww]]
x[xeyy]ly«Aw.w'[w' <ww])Z' [z Aw.w' [w'—ww]]

—oey
x[xewiw][wi«Z'Z" [[z=dw.w' [w' —ww]]

—omy

25 /29

Positive A-calculus Apos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not

exist!

Example of reduction:
x[xeyy]ly<zZ'|[z=Aw.w' [w <ww]]

—oeme, X[xewiwi][w{Z'Z [z Aw.w' (W —ww]]

25 /29

Explicit positive A-calculus Axpos

t,u = x| t[xeyz] | t{x<Ay.u]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not

exist!

Example of reduction:

x[xeyy]ly<zZ' |[z=Aw.w' [w' <ww]]
x[xeyy]ly«Aw.w'[w «ww])Z' [z Aw.w' [w'—ww]]

—oey
x[xewmw] [wi«Z' 2"][z=dw.w'[w' —ww]]

—omy

25 /29

Explicit positive A-calculus Axpos

t,u u= x| t[xeyz] | t{xeAy.u] | tix—(Ay.u)z]

® ESs are flattened.
® Restricted form of explicit substitutions:

1. Minimalistic application yz
2. No ES for variables: variables are not values and renaming chains do not

exist!

Example of reduction:

x[xeyy]ly<zZ' |[z=Aw.w' [w' <ww]]
x[xeyy]ly«Aw.w'[w «ww])Z' [z Aw.w' [w'—ww]]

—oey
x[xewmw] [wi«Z' 2"][z=dw.w'[w' —ww]]

—omy

Key fact: Apos (resp. Axpos) is directly useful by definition!

25 /29

Positive A-calculus captures the essence of usefulness

Aovsc (= Useful Aovsc + Non-useful)

26/29

Positive A-calculus captures the essence of usefulness

Aovsc (= Useful Aovsc + Non-useful)

26/29

Positive A-calculus captures the essence of usefulness

Aovsc (= Useful Aovsc + Non-useful)

26/29

Positive A-calculus captures the essence of usefulness

Aovsc (= Useful Aovsc + Non-useful)

Useful Aovsc Non-useful
t * t, * u

26/29

Positive A-calculus captures the essence of usefulness

Termination Aovsc (= Useful Aovsc + Non-useful)
Equivalence - sy
Useful Aovsc Non-useful
t “t! Tu

26/29

Positive A-calculus captures the essence of usefulness

Termination Aovsc (= Useful Aovsc + Non-useful)
Equivalence - sy
Useful Aovsc Non-useful
" * t’ *U

preserves the number
of m-steps

1 ‘ [¥]

)\oxpos

26/29

Positive A-calculus captures the essence of usefulness

Termination Aovsc (= Useful Aovsc + Non-useful)
Equivalence - sy
Useful Aovse Non-useful
" * t/ *U
11
[[
onpos

26/29

Summing up

Focusing

27 /29

Summing up

Focusing

Annotating proofs
with terms

Term representation

27 /29

Summing up

Focusing

Annotati f:
nnotating proots Curry-Howard?
with terms

Term representation

27 /29

Summing up

Focusing

Annotating cut-free
& Curry-Howard? Nol!

proofs with terms

Term representation

27 /29

Summing up

LJFS
Focusing

Annotating cut-free
proofs with terms

Term representation

27 /29

Summing up

polarized
with negative atoms < LJF, > with

Focusing

Annotating cut-free
proofs with terms

Term representation

atoms

27 /29

Summing up

polarized
with negative atoms < LJF, > with

Focusing

Annotating cut-free
proofs with terms

Term representation

tree-like syntax
no sharing

atoms

27 /29

Summing up

polarized
with negative atoms < LJF, > with atoms

Focusing

Annotating cut-free
proofs with terms

Term representation

tree-like syntax DAG-like syntax
no sharing allows sharing

27 /29

Summing up

polarized
with negative atoms < LJF, > with atoms

Focusing

Annotating cut-free
proofs with terms

Term representation
tu= x| t{xeyz] | t{xeAy.u]

negative/usual \-terms positive A-terms

27 /29

Summing up

polarized
with negative atoms < LJFS

Focusing

Annotating cut-free
proofs with terms

Term representation

negative/usual \-terms

> with atoms

[CSL 2023]
w/ Miller

tu=x | t{xeyz] | t{x<Ay.u]

positive \-terms

27 /29

Summing up

polarized
with negative atoms < LJFS

Focusing

Annotating cut-free
proofs with terms

Term representation

negative/usual \-terms

|

A-calculus

> with atoms

[CSL 2023]
w/ Miller

tu=x | t{xeyz] | t{x<Ay.u]

positive \-terms

27 /29

Summing up

with negative atoms <

negative/usual \-terms

|

A-calculus

Annotating cut-free
proofs with terms

Term representation

> with atoms
[CSL 2023]
w/ Miller

tu=x | t{xeyz] | t{x<Ay.u]

positive \-terms

|

?

27 /29

Summing up

with negative atoms <

negative/usual \-terms

A-calculus

Annotating cut-free
proofs with terms

Term representation

> with atoms
[CSL 2023]
w/ Miller

tu=x | t{xeyz] | t{x<Ay.u]

positive \-terms

_—

positive A-calculus

27 /29

Summing up

polarized
with negative atoms < LJF, > with atoms
Focusing
Annotating cut-free [CSL 2023]
proofs with terms w/ Miller

Term representation
tu=x | t{xeyz] | t{x<Ay.u]

negative/usual \-terms)\-gr_aphs W'tb—' positive \-terms
bodies

| |

A-calculus positive A-calculus

27 /29

Summing up

polarized
with negative atoms < LJF, > with atoms
Focusing
Annotating cut-free [CSL 2023]
proofs with terms w/ Miller

Term representation
tu= x| t{xeyz] | t{x<Ay.u]

A-graphs with

negative/usual \-terms . <— positive \-terms
bodies

*BJ [APLAS 2023] *P°{

A-calculus positive A\-calculus

27/29

Summing up

polarized
with negative atoms < LJF, > with atoms
Focusing
Annotating cut-free [CSL 2023]
proofs with terms w/ Miller

Term representation
tu= x| t{xeyz] | t{x<Ay.u]

)\-gr_aphs wliiy positive \-terms
bodies

[APLAS 2023] *P°{

negative/usual \-terms

positive A\-calculus

Sharing

27/29

Summing up

polarized
with negative atoms < LJF, > with atoms
Focusing
Annotating cut-free [CSL 2023]
proofs with terms w/ Miller

Term representation
tu= x| t{xeyz] | t{x<Ay.u]

)\-gr_aphs wliiy positive \-terms
bodies

[APLAS 2023] *P°{

negative/usual \-terms

positive A\-calculus

Avse Sharing

27/29

Summing up

polarized
with negative atoms < LJF, > with atoms
Focusing
Annotating cut-free [CSL 2023]
proofs with terms w/ Miller

Term representation
tu= x| t{xeyz] | t{x<Ay.u]

)\-gr_aphs wliiy positive \-terms
bodies

[APLAS 2023] *P°{

negative/usual \-terms

useful Aysc positive A\-calculus
Avse = + Sharing

non-useful Aysc

27/29

Summing up

polarized
with negative atoms < LJF, > with atoms
Focusing
Annotating cut-free [CSL 2023]
proofs with terms w/ Miller

Term representation
tu= x| t{xeyz] | t{x<Ay.u]

)\-gr_aphs wliiy positive \-terms
bodies

[APLAS 2023] *P°{

negative/usual \-terms

useful Agge oo SRR > positive A-calculus
Avse = + Sharing

non-useful Aysc

27/29

Summing up

polarized
with negative atoms < LJFS > with atoms
Focusing
Annotating cut-free [CSL 2023]
proofs with terms w/ Miller

Term representation
tu= x| t{xeyz] | t{x<Ay.u]

)\-gr_aphs wliiy positive \-terms
bodies

[APLAS 2023] *P“J

negative/usual \-terms

useful Avsc > positive \-calculus
Avse = + Sharing [MFPS 2024]
w/ Accattoli

non-useful Aysc

27/29

Future work

® Towards a better understanding of polarities (of atomic formulas) in full

linear logic.

¢ Efficient implementation of meta-level renamings involved in Ap.s. We
expect this to be doable in an efficient way via an appropriate abstract
machine.

® Apos for call-by-need evaluation.

28/29

Thank you for listening!

29/29

	Introduction
	Proofs as Terms
	Terms as Programs

