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Proof as terms
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Proofs as terms

e Proof theory has been widely used in studying terms and programs,
often via Curry-Howard correspondence.

e Which proof system to choose?
Natural deduction: not sophisticated enough
Sequent calculus: too little structure and too many redundancies

e Focusing: a light canonical form for (sequent) proofs with more
structure

e Focused proof system LJF for Gentzen’s LJ: Focusing and
polarization
» Connectives and atomic formulas are polarized
» Different polarizaions do not affect provability, but they induce different
forms of proofs
< different styles of term structures '

"Dale Miller and Jui-Hsuan Wu. A positive perspective on term representation. CSL
2023.
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Two encodings of untyped A-terms

Using LJF, with the two axioms D > D > D and (D > D) > D where D is
atomic, and by considering only sequents of the form:

D7
we have the following rules:

D is given the negative polarity

Del nvar
'+ D

e D

D na,
reD &

rLD+D
nabs
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D is given the positive polarity

Del —— pvar
It D 2

r,D
{D,DycT
D

papp

LD+ D
It D

LD+ D
pabs
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D is given the positive polarity
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Two encodings of untyped A-terms

e The negative bias syntax corresponds to the usual representation
of untyped A-terms: tree-structure, top-down

e The positive bias syntax gives a term structure where sharing is
possible via named structures, or explicit substitutions: DAG,
bottom-up

o What does cut-elimination do in these two cases?

» Terms considered here correspond to cut-free proofs.

» Cut-elimination # Computation

» If we introduce a cut between two cut-free proofs, cut-elimination
provides a natural notion of substitution. As expected, in the negative
case, the cut-elimination procedure of LJF yields the usual meta-level
substitution for untyped A-terms. What about the positive case?
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positive A-calculus
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The positive A-calculus

In the following, we are interested in the positive bias syntax.
Fix a set NaME = {X, y, Z, ...} of names (or variables). Terms, contexts
and left contexts are defined as follows:

Terms 5,1 = x| t[x « yz] | t[x « Ay.5]
Contexts  C :=0] C[x « yz] | C[x « Ay.s] | t[x « 2y.C]
Lert CoNTEXTS L =0|L[x < yz]|L[x « Ay.s]

A term can be viewed as a list of named structures (or explicit
substitutions) followed by a variable. Also note that every term can be
written uniquely (up to a-equivalence) as L(x) for some left context L and
variable x.
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The positive A-calculus: Structural equivalence

If two named structures are independent of each other, we should be
able to permute them. By defining fv(yz) = {y, z} and
fv(Ay.s) = fv(s) \ {y}, this can be expressed using the equation:

tx1 « p1][X2 < p2] ~ser t[Xo — Po][X1 «— pi]

if x; ¢ fv(p2) and xz ¢ fv(p1)

Definition (Structural equivalence)

We define an equivalence relation =g, on terms, called the structural
equivalence, as the smallest congruence containing ~gty.
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The positive A-calculus: Substitution

Definition (Substitution on terms)

Let t, u be terms and x a name such that x ¢ fv(u). We define the result
of substituting u for x in t, written t[x/u], as follows:

tix/y] = tix/y}
t[x/sly « zw]] = t[x/s][y <« zw]
t[x/sly « Az.u]] = t[x/s][y « Az.u]

Note that by expressing the term u uniquely as L{y), we have
t[x/u] = L{t{x/y}) by a straightforward induction.

An example:
Let t be the term y[y « Az.w[w « za]][x < aa] and u the term
as[az « arai][ar « apap]. Then

tla/u] = yly « Az.w[w « zao]][x « axap][ax « arai][ai « apao]
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The positive A-calculus: Unfolding

How to compare a term of the positive 1-calculus with a usual
A-term?

We can unfold all the named structures.

Definition (Unfolding)

The unfolding { of a term t is the untyped A-term defined as follows:
X=X tlx < yz] = t{x/yz) tx < Ay.s] = t{x/ay.s}

where {-/-} is the meta-level substitution of untyped A-terms.

Note that, this definition can also be justified by manipulating LJF proofs
via cut-elimination.
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The positive A-calculus: Reduction

How should we evaluate a term t in the positive A-calculus?

A possible way is to compute its unfolding t and evaluate it in the untyped
A-calculus. In this case, we can refer to the S-normal form of t (if it exists)
as the meaning of t.

However, this can be costly as the unfolding of a term might have
exponential size with respect to the original term.

As a result, we look for a reduction system for the positive 1-calculus that
is compatible with the g-reduction in the untyped A-calculus.
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The positive A-calculus: Reduction

We propose the following beta-rule and gc-rule.

C(t[z « xw])[x « Ay.L{y")] Ppera C{L(HZ/Y DIy /WhH[X « Ay.L(y")]
t[x « Ay.s] ogc t if x ¢ fv(t)

How we define the beta-rule:
1. for a given term t, consider its corresponding (cut-free) proof 1

2. identify a certain pattern (that actually corresponds to a beta-redex)
in T and transform the proof into a proof with cut 1’

3. apply cut-elimination to I’
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The positive A-calculus: Reduction

Clt[z « xw[x < Ay.L{YD]  Hvera  CLLHZ Y DIy/WHX < Ay Ly
tx « Ay.s] g t if x ¢ fv(t)
An example:

Xo[X2 — gxi][x1 « fxo][f « Ax.z[z « yy][y < xx]]
—peta Xo[Xo — 9z1][z1 — yayillyr « Xoxol[f « Ax.z[z « yy][y « xx]|

—gc  Xe[Xe & 9z1][21 < yiya]lyr < Xoxo]

We define —pos @S —peta U —ge.
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The positive A-calculus: Reduction

C(t[z « xwh[x < Ay.L{y)]  vera  CLLHZ/Y' WY /WhHX « Ay.L(y)]
tx « Ay.s] g t if x ¢ fv(t)

Proposition

Let s and t be terms such that s —ps t. Then s —; .

Proposition

If s is a normal term with respect to —.s, then s is g-normal.
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The positive A-calculus and the VSC

The value substitution calculus (VSC) is a call-by-value A-calculus with
explicit substitutions proposed by Accattoli and Paolini.

The syntax and the reduction rules of the VSC are shown below:

Terms tu =V |tu|t[x « U]
VALUES v =x|Ax.t
CONTEXTS C =0|tC|Ct|Ax.C|C[x « t]| t[x « C]
Lerr CoNTEXTS L =0|L[x«{

Liax.tyu >y L{t[x < u])
tx « L(v)] e L{t{Xx/v})

It is easy to see that all terms and contexts of the positive A-calculus are
included in the VSC.
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Usefulness

For example, consider the term

t = wlw « X][f « A2p.25]23 « G(22)][z2 « G(z1)][z1 < G(20)]][x < Ay.S].
where G(t) = Awp.w3[ws — wiws][wa « gt][wy « gt] with g a fixed

name and s a normal term in positive A-calculus. After one beta-step

and one gc-step, we obtain a normal term

z3(z3 = G(2)][z; < G(2)][z1 « G(X)][x < Ay.s].

in the positive A-calculus. However, in the VSC, we have

zlz3 < G(2)][2, < G(z)][z; — G(X)][x < Ay ] —e
223 < G(2)][z; < G(z))][z; — G(4y-s)] —e
z3(2z3 < G(2)][2, — G(G(4y-5))] —e
z3]z3 = G(G(G(1y-$)))] —e

G(G(G(4y-5)))
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The positive A-calculus and the VSC

We can actually consider a variant of the VSC, called micro-step as
substitutions are treated one by one instead of using meta-level

substitution.

L{ax.thu  +p L{t[x « u])
CX)x « L{v)] e LCW[X < V])
tix « L(v)] g 't if x ¢ fv(t)

The beta-rule can actually be simulated by the VSC as follows:

C{t[z « xw])[x « Ay.L{y")] —e
C(t[z « (Ay.LyNWhIx « Ay.LLy)] —w
C(t[z « LDy « wD[x « Ay.L(y)] »o =g
C(t[z « Ly My /wiD[x « y.LLy")] —e
C{L{Hz/y' My /whx « ay.L{y")]

—)gc/
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A-graphs with bodies
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A-graphs with bodies

We also propose a graphical representation for the positive A-calculus.

OUTPUT

@/

(@
@ (@ (@

ni[n; « (Ab.bs[bs « byb][b; « (Ar.r3[r; « rir;][r; « ab][r; « rr])][b; « ab])]

ni[n; « (Ab.bs[bs « byb;][by « ab][b; « (Ar.r3[r; « rir;][r; « rr][r; « ab])])]
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A-graphs with bodies: Definition

Definition
A pre-graph is a DAG built with the following three
kinds of nodes:

e Application: an application node is labeled with @
and has two incoming edges (left and right).

e Abstraction: an abstraction node is labeled with
A and has one incoming edge.

e Variable: a variable node has no incoming edge.
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A-graphs with bodies: Definition

Definition
An unlabeled A-graph with bodies is a pre-graph
G together with two functions bv : A¢g — Vg and
body : NAg — 2N¢\Vé (Ag: abstraction nodes of G, ®
Vg: variable nodes of G) such that:
1. body(l) nbody(l') =0 for | + I'.
2. Bg = (N, {(LI") |1, € Ng, | € body(I')}), called
the scope graph of G, is a DAG.
3. If n=bv(l) or n € body(l) and (n, m) € &g, then
we have

» m=|or
» m e body(I') s.t. there is a path from I to [ in Bg.

Jui-Hsuan Wu (Ray) Proofs as Terms, Terms as Graphs 22/28



A-graphs with bodies: Definition

Definition
An unlabeled A-graph with bodies is a pre-graph
G together with two functions bv : A¢g — Vg and
body : NAg — 2N¢\Vé (Ag: abstraction nodes of G, ®
Vg: variable nodes of G) such that:
1. body(l) nbody(l') =0 for | + I'.
2. Bg = (N, {(LI") |1, € Ng, | € body(I')}), called
the scope graph of G, is a DAG.
3. If n=bv(l) or n € body(l) and (n, m) € &g, then
we have

» m=|or
» m e body(I') s.t. there is a path from I to [ in Bg.

Jui-Hsuan Wu (Ray) Proofs as Terms, Terms as Graphs 22/28



A-graphs with bodies: Definition

Definition
An unlabeled A-graph with bodies is a pre-graph
G together with two functions bv : A¢g — Vg and
body : NAg — 2N¢\Vé (Ag: abstraction nodes of G, ®
Vg: variable nodes of G) such that:
1. body(l) nbody(l') =0 for | + I'.
2. Bg = (N, {(LI") |1, € Ng, | € body(I')}), called
the scope graph of G, is a DAG.
3. If n=bv(l) or n € body(l) and (n, m) € &g, then
we have

» m=|or
» m e body(I') s.t. there is a path from I to [ in Bg.

Jui-Hsuan Wu (Ray) Proofs as Terms, Terms as Graphs 22/28



A-graphs with bodies: Definition

Definition
An unlabeled A-graph with bodies is a pre-graph
G together with two functions bv : A¢g — Vg and
body : NAg — 2N¢\Vé (Ag: abstraction nodes of G, ®
Vg: variable nodes of G) such that:
1. body(l) nbody(l') =0 for | + I'.
2. Bg = (N, {(LI") |1, € Ng, | € body(I')}), called
the scope graph of G, is a DAG.
3. If n=bv(l) or n € body(l) and (n, m) € &g, then
we have

» m=|or
» m e body(I') s.t. there is a path from I to [ in Bg.

Jui-Hsuan Wu (Ray) Proofs as Terms, Terms as Graphs 22/28



A-graphs with bodies: Definition

Definition

e A A-graph with bodies is an unlabeled
A-graph with bodies with a unique label
assigned to each free variable node, and with
a global node chosen, called the output of
the A-graph with bodies.

e A Y -1-graph with bodies is a A-graph with
bodies with a free variable node labeled by
each element of a signature X.
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A-graphs with bodies: Definition

Definition
e A A-graph with bodies is an unlabeled
A-graph with bodies with a unique label
©,

OUTPUT

assigned to each free variable node, and with
a global node chosen, called the output of
the A-graph with bodies.
e A X-2-graph with bodies is a 1-graph with oo
bodies with a free variable node labeled by )
O

On®

each element of a signature .
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A-graphs with bodies and terms

A-graphs with bodies capture the structural equivalence on terms.

Theorem

We have a one-to-one correspondence between ¥-1-graphs with bodies
and X-terms up t0 =g¢;.

Substitution on A-graphs with bodies can be defined in a straightforward
way:

OUTPUT

0 OUTPUT

@ @
@ (@ (@)
g O b @ O
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A-graphs with bodies: Reduction

Definition

Let G be a A-graph with bodies and | an abstraction node. We define the
box of I as the union of bodies together with their bound variable nodes
below I

box(l) = ] (body(I') U {bv(I)})

I~lin Bg

Reduction can then be defined by duplicating boxes and by applying
substitutions.

OuTPUT OuTPUT
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Generalization and Conclusion
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Generalization

Here, we use two specific axioms D > D > D and (D > D) > D to
provide encodings for untyped A-terms.

In fact, thanks to LJF, similar term structures can be defined using any
set of formulas of order at most 2 where the order ord(B) of a formula B
is defined as follows:

ord(A) =0 ord(By > By) = max(ord(B;) + 1, By)

Note that ord(D > D > D) =1 and ord((D > D) > D) = 2.

Any formula F of order at most 2 can be writtenas By >--- > B, D A
with A atomic and ord(B;) < 1. If ord(B;) = 1 for some i, then the node
corresponding to F comes with a notion of body.
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Conclusion

e \We define the positive A-calculus, whose reduction does not
correspond to cut-elimination but is also inspired by some
proof-theoretic consideration.

e The positive A-calculus is closely related to the VSC but does useful
substitutions of abstractions.

e JA-graphs with bodies captures the structural equivalence on terms
and operations can be implemented on them in a straightforward
way.

e Some future directions:

» Explore more connections between the positive A-calculus and the
VSC using usefulness
» Extend to the settings where mixed polarities for atoms are considered
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